Appropriate data analysis technology can make people use the online degree education, obtain the data and information generated in the learning management system, and provide a useful decision basis for optimizing the teaching and management process of online degree education. Data analysis technology can help English teachers better grasp students’ learning situations and progress and optimize management. First, data analysis methods and decision tree algorithms are analyzed. Second, in data mining technology, the C4.5 decision tree method is used to construct an English score prediction model. Through the analysis of English learning-related information such as questionnaires and collected student test score data, the prediction of English teaching performance is analyzed from the perspective of teachers’ in-depth intervention. The survey results are shown as follows: (1) The model is simulated and tested. The model’s prediction accuracy is 98.20%, 99.10%, 99.40%, 98.70%, and 98.90%, higher than the standard accuracy of 97.5%. Additionally, the average response efficiency of the model is 99.42%, which can be used. (2) The failure rate of boys’ final grades is 11%, and the failure rate of female students’ final grades is 10%. There is only a 1% difference in the final grade failure rate between male and female students. The effect of gender on teaching performance is less pronounced. (3) As the number of practice questions increases, the rate of failing grades decreases. Thus, the data suggest that the number of practice questions affects instructional performance. (4) Teachers’ intervention can improve students’ English achievement. Increasing the intensity of the intervention also improves student achievement. Therefore, the follow-up research should increase the number of practice questions and teacher intervention in English teaching. The English teaching achievement prediction suggestion based on big data analysis is put forward, providing a reference for prediction management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.