Epilepsy is a chronic and recurrent disease of the central nervous system, with a complex pathology. Recent studies have demonstrated that the activation of glial cells serve an important role in the development of epilepsy. The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1) in mediating the activation of glial cells through the toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in seizure, and the underlying mechanism. The brain tissue of post-surgery patients with intractable epilepsy after resection and the normal control brain tissue of patients with craniocerebral trauma induced intracranial hypertension were collected. The expression level and distribution pattern of HMGB1, OX42 and NF-κB p65 were detected by immunohistochemistry. HMGB1, TLR4, receptor for advanced glycation end products (RAGE), NF-κB p65 and inducible nitric oxide synthase (iNOS) expression levels were detected by western blotting, and serum cytokine levels of interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β and IL-10 in patients with epilepsy and craniocerebral trauma were detected by ELISA. And cell model of epilepsy was established by coriaria lactone (CL)-stimulated HM cell, and the same factors were measured. The potential toxic effect of HMGB1 on HM cells was evaluated by MTT and 5-ethynyl-2-deoxyuridine assays. The results demonstrated that compared with the control group, levels of HMGB1, TLR4, RAGE, NF-κB p65 and iNOS in the brain of the epilepsy group were significantly increased, and increased cytokine levels of IL-1, IL-6, TNF-α, TGF-β and IL-10 in patients with epilepsy were also observed. At the same time, the above results were also observed in HM cells stimulated with CL. Overexpression of HMGB1 enhanced the results, while HMGB1 small interfering RNA blocked the function of CL. There was no significant toxic effect of HMGB1 on HM cells. In conclusion, overexpression of HMGB1 potentially promoted epileptogenesis. CL-induced activation of glial cells may act via up-regulation of HMGB1 and TLR4/RAGE receptors, and the downstream transcription factor NF-κB.
BackgroundWe aimed to determine the risk conferred by metabolic syndrome (METS) and diabetes mellitus (DM) to recurrent stroke in patients with minor ischemic stroke or transient ischemic attack from the CHANCE (Clopidogrel in High‐risk patients with Acute Non‐disabling Cerebrovascular Events) trial.Methods and ResultsIn total, 3044 patients were included. Patients were stratified into 4 groups: neither, METS only, DM only, or both. METS was defined using the Chinese Diabetes Society (CDS) and International Diabetes Foundation (IDF) definitions. The primary outcome was new stroke (including ischemic and hemorrhagic) at 90 days. A multivariable Cox regression model was used to assess the relationship of METS and DM status to the risk of recurrent stroke adjusted for potential covariates. Using the CDS criteria of METS, 53.2%, 17.2%, 19.8%, and 9.8% of patients were diagnosed as neither, METS only, DM only, and both, respectively. After 90 days of follow‐up, there were 299 new strokes (293 ischemic, 6 hemorrhagic). Patients with DM only (16.1% versus 6.8%; adjusted hazard ratio 2.50, 95% CI 1.89–3.39) and both (17.1% versus 6.8%; adjusted hazard ratio 2.76, 95% CI 1.98–3.86) had significantly increased rates of recurrent stroke. No interaction effect of antiplatelet therapy by different METS or DM status for the risk of recurrent stroke (P=0.82 for interaction in the fully adjusted model of CDS) was observed. Using the METS (IDF) criteria demonstrated similar results.ConclusionsConcurrent METS and DM was associated with an increased risk of recurrent stroke in patients with minor stroke and transient ischemic attack.
TAR DNA binding protein 43 (TDP-43) A315T mutation (TDP-43A315T) has been found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) as a disease causing mutation with enhanced protein aggregation, formation of protease-resistant fragments, and neurotoxicity. However, the molecular mechanisms for its pathogenic effects are largely unknown. In this study, we demonstrate that TDP-43A315T enhanced neuronal toxicity via activating endoplasmic reticulum (ER) stress-mediated apoptosis in SH-SY5Y cells. Moreover, autophagy was activated by overexpression of TDP-43A315T in a self-defensive manner to decrease neuronal toxicity. Inhibition of autophagy attenuates TDP-43A315T induced neuronal cell death. Furthermore, the expression levels of TDP-43, ER chaperone 78 kDa glucose-regulated protein (GRP-78), and autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) in the skin tissues from ALS patients with TDP-43A315T mutation were markedly higher than those from the healthy control. Thus, our findings provide new molecular evidence for TDP-43A315T neuropathology. In addition, the pathological change in the skin tissues of the patients with TDP-43A315T mutation can be used as a quick diagnostic biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.