Background Nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-induced oxidative stress, including the production of reactive oxygen species (ROS) and hydrogen peroxide, plays a pivotal role in neuropathic pain. Although the activation and plasma membrane translocation of protein kinase C (PKC) isoforms in dorsal root ganglion (DRG) neurons have been implicated in multiple pain models, the interactions between NOX2-induced oxidative stress and PKC remain unknown. Methods A spared nerve injury (SNI) model was established in adult male rats. Pharmacologic intervention and AAV-shRNA were applied locally to DRGs. Pain behavior was evaluated by Von Frey tests. Western blotting and immunohistochemistry were performed to examine the underlying mechanisms. The excitability of DRG neurons was recorded by whole-cell patch clamping. Results SNI induced persistent NOX2 upregulation in DRGs for up to 2 weeks and increased the excitability of DRG neurons, and these effects were suppressed by local application of gp91-tat (a NOX2-blocking peptide) or NOX2-shRNA to DRGs. Of note, the SNI-induced upregulated expression of PKCε but not PKC was decreased by gp91-tat in DRGs. Mechanical allodynia and DRG excitability were increased by ψεRACK (a PKCε activator) and reduced by εV1-2 (a PKCε-specific inhibitor). Importantly, εV1-2 failed to inhibit SNI-induced NOX2 upregulation. Moreover, the SNI-induced increase in PKCε protein expression in both the plasma membrane and cytosol in DRGs was attenuated by gp91-tat pretreatment, and the enhanced translocation of PKCε was recapitulated by H2O2 administration. SNI-induced upregulation of PKCε was blunted by phenyl-N-tert-butylnitrone (PBN, an ROS scavenger) and the hydrogen peroxide catalyst catalase. Furthermore, εV1-2 attenuated the mechanical allodynia induced by H2O2 Conclusions NOX2-induced oxidative stress promotes the sensitization of DRGs and persistent pain by increasing the plasma membrane translocation of PKCε.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.