DNA amplification is one of the mechanisms to activate genes that are implicated in neoplastic transformation and gain of chromosome band 3q26 is a common event in squamous cell carcinomas. The aim of the present work was to identify the specific target gene from four candidates (MDS1, PRKCI, ECT2, and PIK3CA) located on 3q26 amplification in esophageal squamous cell carcinomas (ESCCs). To assess the prevalence of copy number gains of putative genes, fluorescence in situ hybridization (FISH) was applied on 108 ESCCs and 9 ESCC cell lines. Our data showed that MDS1 and PRKCI were more frequently gained. Positive correlation was found only for PRKCI between amplification and tumor size (P = 0.043), lymph node metastasis (P = 0.015) and clinical stage (P = 0.002). PRKCI gene amplification was highly correlated with protein overexpression (P = 0.009), suggesting that gene amplification is one important mechanism involved in PRKCI overexpression. To investigate further the role of PRKCI alteration in esophageal tumors, a tissue microarray containing samples from 180 ESCCs was used for immunohistochemistry analysis. Statistical analysis revealed that PRKCI overexpression was correlated with lymph node metastasis (P = 0.002) and higher stage (P = 0.004). Performing multivariate logistic regression analysis, a significant association between PRKCI overexpression and presence of lymph node metastasis was found, which was independent of T-stage of the primary tumors (P = 0.004). Our results indicate that PRKCI is an attractive target in the 3q26 amplicon and that it may serve as a molecular marker for metastasis and occult advanced tumor stages in ESCC.
Background: Excitable cells show activity-dependent alternative splicing of ion channels. Results: CaMKIV phosphorylates hnRNP L at Ser-513, which is essential for depolarization-repression of a Slo1 potassium channel exon and splicing factor U2AF65. Conclusion: Depolarization controls alternative splicing of Slo1 channels through Ser-513 phosphorylation and inhibition of U2AF65.Significance: This provides the first direct link between depolarization/CaMKIV and the constitutive spliceosome.
As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.