Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu-and Fe-based high temperature superconductors.In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO 3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (T c ) at 65±5 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-T c , make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.
Recently discovered alongside its sister compounds KV3Sb5 and RbV3Sb5, CsV3Sb5 crystallizes with an ideal kagome network of vanadium and antimonene layers separated by alkali metal ions. This work presents the electronic properties of CsV3Sb5, demonstrating bulk superconductivity in single crystals with a Tc = 2.5 K. The normal state electronic structure is studied via angleresolved photoemission spectroscopy (ARPES) and density functional theory (DFT), which categorize CsV3Sb5 as a Z2 topological metal. Multiple protected Dirac crossings are predicted in close proximity to the Fermi level (EF ), and signatures of normal state correlation effects are also suggested by a high temperature charge density wave-like instability. The implications for the formation of unconventional superconductivity in this material are discussed.
High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58Rb0.42)Fe1.72Se2 superconductor with a T(c) = 32 K. The Fermi surface topology consists of two electronlike Fermi surface sheets around the Γ point which is distinct from that in all other iron-based superconductors reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of ∼12 meV. The large Fermi surface near the Γ point also shows a nearly isotropic superconducting gap of ∼15 meV, while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints into the understanding of the superconductivity mechanism in iron-based superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.