Although long non-coding RNAs (lncRNAs) are known to play an important role in cell regulation in several cancers, the regulatory mechanisms in renal carcinoma cells remain unclear. HOX transcript antisense RNA (HOTAIR), an lncRNA, coordinates with chromatin-modifying enzymes to regulate gene silencing. HOTAIR is over-expressed in several types of carcinoma cells. Thus, we hypothesised that lncRNA HOTAIR is crucial for cell proliferation and invasion and that its knockdown induces apoptosis in renal carcinoma cells. lncRNA HOTAIR expression was found to be elevated in renal carcinoma cells. Additionally, lncRNA HOTAIR knockdown by RNA interference with siRNA was found to significantly affect the cell cycle in the G0/G1 phase and weaken the abilities of cell proliferation and invasion in vitro. Xenograft experiments confirmed that the growth of xenograft tumours formed by renal carcinoma cells was suppressed after silencing lncRNA HOTAIR expression. Moreover, chromatin immunoprecipitation (ChIP) and RNA-binding protein immunoprecipitation (RIP) assays revealed that knockdown of lncRNA HOTAIR led to the weakening of the recruitment and binding abilities of EZH2 and H3K27me3 locus with lncRNA HOTAIR. Furthermore, the cell cycle-related gene locus was in an active transcriptional state by the silencing of lncRNA HOTAIR expression and modulation of covalent histones.
Inhibition of the MDM2-p53 interaction has been shown to produce an antitumor effect, especially in MDM2 amplified tumors. The isoindolinone scaffold has proved to be versatile for the discovery of MDM2-p53 antagonists. Optimization of previously reported inhibitors, for example, NU8231 (7) and NU8165 (49), was guided by MDM2 NMR titrations, which indicated key areas of the binding interaction to be explored. Variation of the 2-N-benzyl and 3-alkoxy substituents resulted in the identification of 3-(4-chlorophenyl)-3-((1-(hydroxymethyl)cyclopropyl)methoxy)-2-(4-nitrobenzyl)isoindolin-1-one (74) as a potent MDM2-p53 inhibitor (IC(50) = 0.23 ± 0.01 μM). Resolution of the enantiomers of 74 showed that potent MDM2-p53 activity primarily resided with the (+)-R-enantiomer (74a; IC(50) = 0.17 ± 0.02 μM). The cellular activity of key compounds has been examined in cell lines with defined p53 and MDM2 status. Compound 74a activates p53, MDM2, and p21 transcription in MDM2 amplified cells and shows moderate selectivity for wild-type p53 cell lines in growth inhibition assays.
We retrospectively studied a random cohort of patients with cerebral trauma to investigate the risk factors of acute kidney injury (AKI) following cerebral trauma. AKI was determined using the RIFLE (risk, injury, failure, loss, or end-stage kidney) staging criteria. About 171 patients were chosen in the study, with 53 patients in AKI group and 118 patients without AKI in non-AKI group. By logistic regression analysis, univariate analysis revealed that age, hypertension, emergent surgery, systemic inflammatory response syndrome (SIRS), Glasgow coma score (GCS), sequential organ failure assessment (SOFA) score, the respiration, coagulation, and cardiovascular components of the SOFA score, mechanical ventilation time, red blood cell transfusion, plasma transfusion, and the accumulative doses of furosemide, torsemide, and mannitol were significantly related to AKI after cerebral trauma. Logistic multivariate regression analysis showed that SOFA score [odds ratio (OR) = 1.516, 95% confidence interval (CI) 1.222-1.881, p < 0.001], the accumulative doses of torsemide (OR = 0.016, 95% CI 1.002-1.031, p = 0.016), and the accumulative doses of mannitol (OR = 2.687, 95% CI 1.062-6.800, p = 0.037) were independent risk factors of AKI. This model had a good discrimination for AKI with an area under the receiver operating characteristic (ROC) curve of 0.901 (p < 0.001). The accumulative doses of mannitol as a risk factor of AKI were identified by propensity score match (PSM) method. We concluded that AKI was a common complication in patients with cerebral trauma. SOFA score and the accumulative doses of torsemide and mannitol were independent risk factors of AKI following cerebral trauma.
IntroductionRegional citrate anticoagulation (RCA) is gaining popularity in continous renal replacement therapy (CRRT) for critically ill patients. The risk of citrate toxicity is a primary concern during the prolonged process. The aim of this study was to assess the pharmacokinetics of citrate in critically ill patients with AKI, and used the kinetic parameters to predict the risk of citrate accumulation in this population group undergoing continuous veno-venous hemofiltration (CVVH) with RCA.MethodsCritically ill patients with AKI (n = 12) and healthy volunteers (n = 12) were investigated during infusing comparative dosage of citrate. Serial blood samples were taken before, during 120 min and up to 120 min after infusion. Citrate pharmacokinetics were calculated and compared between groups. Then the estimated kinetic parameters were applied to the citrate kinetic equation for validation in other ten patients’ CVVH sessions with citrate anticoagulation.ResultsTotal body clearance of citrate was similar in critically ill patients with AKI and healthy volunteers (648.04±347.00 L/min versus 686.64±353.60 L/min; P = 0.624). Basal and peak citrate concentrations were similar in both groups (p = 0.423 and 0.247, respectively). The predicted citrate curve showed excellent fit to the measurements.ConclusionsCitrate clearance is not impaired in critically ill patients with AKI in the absence of severe liver dysfunction. Citrate pharmacokinetic data can provide a basis for the clinical use of predicting the risk of citrate accumulation.Trial RegistrationClinicalTrials.gov Identifier NCT00948558
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.