The storage of facial images in medical records poses privacy risks due to the sensitive nature of the personal biometric information that can be extracted from such images. To minimize these risks, we developed a new technology, called the digital mask (DM), which is based on three-dimensional reconstruction and deep-learning algorithms to irreversibly erase identifiable features, while retaining disease-relevant features needed for diagnosis. In a prospective clinical study to evaluate the technology for diagnosis of ocular conditions, we found very high diagnostic consistency between the use of original and reconstructed facial videos (κ ≥ 0.845 for strabismus, ptosis and nystagmus, and κ = 0.801 for thyroid-associated orbitopathy) and comparable diagnostic accuracy (P ≥ 0.131 for all ocular conditions tested) was observed. Identity removal validation using multiple-choice questions showed that compared to image cropping, the DM could much more effectively remove identity attributes from facial images. We further confirmed the ability of the DM to evade recognition systems using artificial intelligence-powered re-identification algorithms. Moreover, use of the DM increased the willingness of patients with ocular conditions to provide their facial images as health information during medical treatment. These results indicate the potential of the DM algorithm to protect the privacy of patients’ facial images in an era of rapid adoption of digital health technologies.
In portraits, eyeglasses may occlude facial regions and generate cast shadows on faces, which degrades the performance of many techniques like face verification and expression recognition. Portrait eyeglasses removal is critical in handling these problems. However, completely removing the eyeglasses is challenging because the lighting effects (e.g., cast shadows) caused by them are often complex. In this paper, we propose a novel framework to remove eyeglasses as well as their cast shadows from face images. The method works in a detect-then-remove manner, in which eyeglasses and cast shadows are both detected and then removed from images. Due to the lack of paired data for supervised training, we present a new synthetic portrait dataset with both intermediate and final supervisions for both the detection and removal tasks. Furthermore, we apply a cross-domain technique to fill the gap between the synthetic and real data. To the best of our knowledge, the proposed technique is the first to remove eyeglasses and their cast shadows simultaneously. The code and synthetic dataset are available at https://github.com/ StoryMY/take-off-eyeglasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.