Lattice structures have excellent mechanical properties and can be designed by changing the cellular structure. However, the computing scale is extremely large to directly analyze a large-size structure containing a huge number of lattice cells. Evaluating the equivalent mechanical properties instead of the complex geometry of such lattice cells is a feasible way to deal with this problem. This paper aims to propose a series of formulas, including critical structural and material parameters, to fast evaluate the equivalent mechanical properties of lattice structures. A reduced-order model based on the finite element method and beam theory was developed and verified by comparing it with the corresponding full model. This model was then applied to evaluate the equivalent mechanical properties of 25 types of lattice cells. The effects of the material Young’s modulus and Poisson’s ratio, strut diameter, cell size, and cell number on those equivalent mechanical properties were investigated and discussed, and the linear relationship with the material parameters and the non-linear relationship with the structural parameters were found. Finally, a series of analytical-fitting formulas involving the structural and material parameters were obtained, which allows us to fast predict the equivalent mechanical properties of the lattice cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.