The usage of artificial intelligence and machine learning methods on cyberattacks increasing significantly recently. For the defense method of cyberattacks, it is possible to detect and identify the attack event by observing the log data and analyzing whether it has abnormal behavior or not. This paper implemented the ELK Stack network log system (NetFlow Log) to visually analyze log data and present several network attack behavior characteristics for further analysis. Additionally, this system evaluated the extreme gradient enhancement (XGBoost), Recurrent Neural Network (RNN), and Deep Neural Network (DNN) model for machine learning methods. Keras was used as a deep learning framework for building a model to detect the attack event. From the experiments, it can be confirmed that the XGBoost model has an accuracy rate of 96.01% for potential threats. The full attack data set can achieve 96.26% accuracy, which is better than RNN and DNN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.