Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a casecontrol study of gastric cancer, as well as ChAG-and cancerassociated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Wholegenome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG. acid regulation ͉ comparative microbial genomics ͉ ecogenomics ͉ functional genomics ͉ gastric cancer
Helicobacter pylori is generally viewed as an extracellular pathogen. We have analyzed the tropism of H. pylori clinical isolates in a gnotobiotic transgenic mouse model of human chronic atrophic gastritis, a preneoplastic condition. These mice lack acid-producing parietal cells and have an amplified population of dividing gastric epithelial progenitors (GEPs) that express NeuAc␣2,3Gal1,4-glycans recognized by H. pylori adhesins. Scanning confocal and transmission electron microscopic studies of stomachs that had been colonized for 1 month or 1 year revealed intracellular bacterial collections (IBCs) in a small subset of multi-and oligopotential epithelial progenitors. Transmission electron microscopic and multilabel immunohistochemical analyses disclosed bacteria with several morphotypes, including spiral-shaped, in the cytoplasm and endosomes. Several stages in IBC evolution were documented, from a few solitary bacteria to consolidated populations in dividing and nondividing GEPs, to microorganisms traversing breaches in the GEP plasma cell membrane. IBC formation was not a unique feature of H. pylori strains isolated from patients with chronic atrophic gastritis. The notion that adult mammalian epithelial progenitors can function as a repository for H. pylori broadens the view of host habitats available to this and perhaps other pathogens.adult mammalian epithelial progenitors ͉ bacterial pathogenesis ͉ intracellular bacterial communities ͉ gnotobiotic mice ͉ chronic atrophic gastritis
Helicobacter pylori infects the stomachs of half of all humans. It has a relatively benign relationship with most hosts but produces severe pathology, including gastric cancer, in others. Identifying the relative contributions of host, microbial, and environmental factors to the outcome of infection has been challenging. Here we describe one approach for identifying microbial genes that affect the magnitude of host responses to infection. Single colony purified H. pylori isolates were obtained from 25 cases and 71 controls in a Swedish case-control study of gastric cancer. Strains were first phenotyped based on their ability to produce adhesins that recognize two classes of human gastric epithelial receptors. Thirteen binding strains and two non-binding controls were then subjected to whole genome genotyping using H. pylori DNA microarrays. A cohort of "variable" genes was identified based on a microarray-determined call of "absent" in at least one member of the strain panel. Each strain was subsequently introduced into two types of germ-free transgenic mice, each programmed to express a different host factor postulated to pose increased risk for development of severe pathology. Expression of biomarkers of host defense was quantitated 4 weeks after inoculation, and the magnitude of the response correlated with bacterial genotype. The proportion of genes encoding HsdS homologs (specificity subunit of heterooligomeric type I restriction-modification systems) was significantly higher in the pool of 18 variable genes whose presence directly correlated with a robust host response than their proportion in the remaining 352 members of the variable gene pool. This suggests that the functions of these HsdS homologs may include control of expression of microbial determinants that affect the extent of gastric responses to this potentially virulent pathogen.Helicobacter pylori is a microaerophilic Gram-negative bacterium that colonizes the stomachs of ϳ50% of humans. The organism is typically acquired in childhood, but the mechanism of transmission remains unclear (1). In the absence of antibiotic treatment, H. pylori persists in the gastric ecosystem throughout adulthood. Its relationship with most hosts produces few if any symptoms. However, in a small subset of individuals, severe pathology ensues, ranging from gastric and duodenal ulcers to cancer (2).A central challenge has been to identify the relative contributions of host, microbial, and environmental factors to the development of severe pathology versus relatively harmless co-existence. IL-1 and HLA genotypes, and blood group/secretor phenotypes are among the few known host factors that correlate with the development of pathology (3-5). Bacterial factors associated with virulence include components of its cag pathogenicity island (cag PAI (6, 7)), vacA (vacuolating cytotoxin (8)), babA2 (adhesin that binds to human histoblood group antigen Lewis b (9)), and urease (promotes survival in the acidic environment of the stomach (10)).Screening for additional bacterial ...
Helicobacter pylori infection of the human stomach is common and typically benign, although a subset of hosts develops severe pathology. Infection occurs in an organ with distinct microenvironments characterized by pronounced differences in the composition of acid-producing parietal cells. In this study, we examine determinants of bacterial tropism to various gastric niches by using germ-free normal and transgenic mice with an engineered parietal cell ablation. Mice were colonized for 8 weeks with a clinical isolate (Hp1) that expresses adhesins recognized by epithelial NeuAc␣2,3Gal1,4 glycan receptors. In normal mice, Hp1 has tropism for a parietal cell-deficient niche where sialylated glycans are expressed by a narrow band of pit cells positioned at the boundary between the squamous epithelium (forestomach) and the proximal glandular epithelium. Lymphoid aggregates that develop in this niche, but not elsewhere in the stomach, were analyzed by GeneChip and quantitative RT-PCR studies of laser capture microdissected mucosa and yielded a series of biomarkers indicative of immune cell activation and maturation. Genetic ablation of parietal cells produced a new source of NeuAc␣2,3Gal1,4 glycans in amplified gastric epithelial lineage progenitors, with accompanying expansion of Hp1 within the glandular epithelium. Lymphoid aggregates that develop in this formerly acid-protected epithelium have molecular features similar to those observed at the forestomach͞glandular junction. These findings demonstrate the important roles played by parietal cells and glycan receptors in determining the positioning of H. pylori within the gastric ecosystem, and emphasize the need to consider the evolution of pathology within a given host in a niche-specific context. gastric acid ͉ adhesin receptors ͉ immune response ͉ germ-free animals A t least half of all humans harbor Helicobacter pylori in their stomachs. This microaerophilic bacterium is usually acquired in childhood and remains in the stomach of its host for decades (1). In most cases, the host-microbial relationship is benign, marked only by mild mucosal inflammation. However, in a subset of individuals, this relationship evolves to produce gastric or duodenal ulcers, adenocarcinoma, or mucosal lymphoma (2).Lee and coworkers (3) have emphasized that severe pathology more often develops in regions of the gastric epithelium where there is a marked transition in the census of acid-producing parietal cells. They and others proposed that local environmental pH gradients at these transitions provide the organism with an opportunity to sample and occupy niches where growth conditions are optimal (3, 4). Once the organism becomes entrenched, pH and other niche-associated factors (e.g., redox state, nutrient availability) then presumably shape the nature of the host-microbial interaction (5).These speculations emphasize the importance of viewing the nature of the host-microbial cross-talk, the genetic microevolution of this bacterium (6, 7), and the structure of the pathogenic cascad...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.