We sought to determine if the innate immune response is under circadian regulation and whether this impacts overall health status. To this end, we used infection of Drosophila with the human opportunistic pathogenic bacteria Pseudomonas aeruginosa as our model system [1]. We show that the survival rates of wild-type flies vary as a function of when, during the day, they are infected, peaking in the middle of the night. Although this rhythm is abolished in clock mutant flies, those with an inactive period gene are highly susceptible to infection, whereas mutants with impairment in other core clock genes exhibit enhanced survival. After an initial phase of strong suppression, the kinetics of bacterial growth correlate highly with time of day and clock mutant effects on survival. Expression profiling revealed that nighttime infection leads to a clock-regulated transient burst in the expression of a limited number of innate immunity genes. Circadian modulation of survival also was observed with another pathogen, Staphylococcus aureus. Our findings suggest that medical intervention strategies incorporating chronobiological considerations could enhance the innate immune response, boosting the efficacy of combating pathogenic infections.
Summary
Dietary restriction promotes health and longevity across taxa through mechanisms that are largely unknown. Here we show that acute yeast-restriction significantly improves the ability of adult female Drosophila melanogaster to resist pathogenic bacterial infections through an immune pathway involving down-regulation of Target of Rapamycin (TOR) signaling, which stabilized the transcription factor Myc by increasing the steady state level of its phosphorylated forms through decreased activity of protein phosphatase 2A. Upregulation of Myc through genetic and pharmacological means mimicked the effects of yeast-restriction in fully-fed flies, identifying Myc as a pro-immune molecule. Short-term dietary or pharmacological interventions that modulate TOR-PP2A-Myc signaling may provide an effective method to enhance immunity in vulnerable human populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.