To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one another and with macrofaunal burrow abundance, indicating that coupled nitrification-denitrification was enhanced by macrofaunal burrowing activity. Ammonia monooxygenase (amoA) gene copy numbers were used to estimate the ammonia-oxidizing bacterial population size (5.6 ؋ 10 4 to 1.3 ؋ 10 6 g of wet sediment ؊1 ), which correlated with nitrification potentials and was 1 order of magnitude higher for TS and CB than for SS. TS and CB sediments also had higher Fe(III) content, higher Fe(III)-to-total reduced sulfur ratios, higher Fe(III) reduction rates, and lower dissolved sulfides than SS sediments. Iron(III) content and reduction rates were positively correlated with nitrification and denitrification potential and amoA gene copy number. Laboratory slurry incubations supported field data, confirming that increased amounts of Fe(III) relieved sulfide inhibition of nitrification. We propose that macrofaunal burrowing and high concentrations of Fe(III) stimulate nitrifying bacterial populations, and thus may increase nitrogen removal through coupled nitrification-denitrification in salt marsh sediments.
Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetateutilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10 6 acetate-utilizing manganese-reducing cells cm À 3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetatedependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.
Kim, D., Yang, E. J., Kim, K. H., Shin, C-W., Park, J., Yoo, S., and Hyun, J-H. 2012. Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea). – ICES Journal of Marine Science, 69: 23–29. The impact of the anticyclonic Ulleung Warm Eddy (UWE) on the vertical distributions of nutrient and chlorophyll a (Chl a) concentrations in the Ulleung Basin (UB) was investigated during the contrasting summers of 2005 and 2007. The physical structure of the water column was characterized by an intrathermocline eddy (ITE) in 2005, whereas the UWE remained distant from the sampling transect in 2007. Water column structures appeared to be highly stratified, and nutrients in the surface waters were totally depleted at all stations. In 2005, an exceptionally high concentration of Chl a (5.5 mg m−3) was measured below the surface mixed layer in the eddy core (station D3), and values of ∼2.5 mg m–3 were observed at the eddy edge (stations D2 and D4). Formation of an ITE efficiently mixed surface and deep-ocean waters, the latter supplying sufficient nutrients to generate an extremely high concentration of Chl a at the base of the subsurface layer. Overall, the results indicated that the anticyclonic UWE plays a key ecological role in supporting substantial phytoplankton biomass in the nutrient-depleted surface waters in summer and maintaining high benthic mineralization in the deep-sea sediments of the UB.
We investigated the biomass and production rates of microorganisms associated with coastal upwelling and the anticyclonic Ulleung warm eddy (UWE) of the Ulleung basin in the East Sea. Shipboard observations revealed that depth-integrated phytoplankton biomass and production were higher in the moderately stratified ring of the UWE than in the vertically well-mixed eddy core or in the stratified region outside of the eddy in the Ulleung basin. Similarly, heterotrophic bacterial production was higher in the eddy ring than in the eddy core or outside of the eddy. Bacterial biomass in the highly productive eddy ring showed little difference compared to the bacterial biomass of the core site due to the impact of grazing by heterotrophic protozoa. Satellite imagery and diatom species composition data in conjunction with physico-chemical parameters demonstrated that winddriven coastal upwelling in the southeast of Korea was largely responsible for the phytoplankton bloom and enhanced bacterial production along the UWE. Overall, the results indicated that the UWE entrained highly productive upwelling coastal waters and delivered enhanced microbial biomass and production into the central Ulleung basin. The results further implied that the UWE and the subsequent effect on vertical particulate carbon flux may play a significant role in stimulating benthic respiration and in sequestering organic carbon produced by coastal upwelling down into the deep Ulleung basin.KEY WORDS: Bacterioplankton · Phytoplankton · Upwelling · Eddy · Ulleung basin · East SeaResale or republication not permitted without written consent of the publisher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.