Objective To estimate the effects of a relatively protruded head and neck posture on postural balance, in computer based worker. Method Thirty participants, who work with computers for over 6 hrs per day (Group I), and thirty participants, who rarely work with computers (Group II), were enrolled. The head and neck posture was measured by estimating angles A and B. A being the angle between the tragus of the ear, the lateral canthus of the eye, and horizontal line and B the angle between the C7 spinous process, the tragus of the ear, and the horizontal line. The severity of head protrusion with neck extension was assessed by the subtraction of angle A from angle B. We also measured the center of gravity (COG) and postural balance by using computerized dynamic posturography to determine the effect of computer-based work on postural balance. Results Results indicated that group I had a relatively more protruded head with extensive neck posture (angle B-A of group I and group II, 28.2±8.3, 32.9±6.0; p<.05). The COG of group I tended more toward the anterior than that of group II. Postural imbalance and impaired ability to regulate movement in forward and backward direction were also found. Conclusion The results of this study suggest that forward head postures during computer-based work may contribute to some disturbance in the balance of healthy adults. These results could be applied to education programs regarding correct postures when working at a computer for extended periods of time.
ObjectiveTo assess the effect of dominant and non-dominant vision in controlling posture in quiet stance.MethodTwenty-five healthy elderly subjects aged over 60 years old and twenty-five young subjects aged under 30 years old were assessed by computerized dynamic posturography. Postural stability was measured in two conditions; dominant eye open and non-dominant eye open. We used the sensory organization test (SOT) for evaluating sensory impairment. A SOT assessed the subject's ability to use and integrate somatosensory input, vision, and vestibular cues effectively to maintain balance. The SOT was conducted 3 times, and the average value of the 3 trials was used for data analysis. Equilibrium scores reflected the subject's anteroposterior sway. The highest possible score was 100, which indicated that the subject did not sway at all, and a score of 0 indicated a fall from the footplate. Determination of ocular dominance was performed by a hole-in-the card test.ResultsFor the twenty-five young subjects in this study, equilibrium score in two conditions did not differ. However, for elderly subjects over 60 years, the equilibrium score in dominant vision was higher than in nondominant vision (p<0.05).ConclusionIn young subjects, there were no significant differences in postural control between dominant vision and non-dominant vision. However, in elderly subjects, postural control in non-dominant vision was significantly impaired. Therefore, the evaluation of a dominant eye should be considered in rehabilitation programs for elderly people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.