We propose a K-selective percolation process as a model for iterative removals of nodes with a specific intermediate degree in complex networks. In the model, a random node with degree K is deactivated one by one until no more nodes with degree K remain. The non-monotonic response of the giant component size on various synthetic and real-world networks implies a conclusion that a network can be more robust against such a selective attack by removing further edges. From a theoretical perspective, the K-selective percolation process exhibits a rich repertoire of phase transitions, including double transitions of hybrid and continuous, as well as reentrant transitions. Notably, we observe a tricritical-like point on Erdős–Rényi networks. We also examine a discontinuous transition with unusual order parameter fluctuation and distribution on simple cubic lattices, which does not appear in other percolation models with cascade processes. Finally, we perform finite-size scaling analysis to obtain critical exponents on various transition points, including those exotic ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.