The MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the total Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: −8.1 % for SO2, +19.2 % for NOx, +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH3, −3.4 % for PM10, −1.6 % for PM2.5, +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix
A large international field experiment and use of transport modeling has yielded physical, chemical, and radiative properties of the abundant aerosols originating from Asia.
[1] Simulated future summers (i.e., 2049-2051) and annual (i.e., 2050) average regional O 3 and PM 2.5 concentrations over the United States are compared with historic (i.e., [2000][2001][2002] summers and all of 2001) levels to investigate the potential impacts of global climate change and emissions on regional air quality. Meteorological inputs to the CMAQ chemical transport model are developed by downscaling the GISS Global Climate Model simulations using an MM5-based regional climate model. Future-year emissions for North America are developed by growing the U.S. EPA CAIR inventory, Mexican and Canadian emissions and by using the IMAGE model with the IPCC A1B emissions scenario that is also used in projecting future climate. Reductions of more than 50% in NO X and SO 2 emissions are forecast. Impacts of global climate change alone on regional air quality are small compared to impacts from emission control-related reductions, although increases in pollutant concentrations due to stagnation and other factors are found. The combined effect of climate change and emission reductions lead to a 20% decrease (regionally varying from À11% to À28%) in the mean summer maximum daily 8-hour ozone levels (M8hO 3 ) over the United States. Mean annual PM 2.5 concentrations are estimated to be 23% lower (varies from À9% to À32%). Major reductions in sulfate, nitrate and ammonium PM 2.5 components combined with the limited reduction in organic carbon suggests that organic carbon will be the dominant component of PM 2.5 mass in the future. Regionally, the eastern United States benefits more than the rest of the regions from reductions in both M8hO 3 and PM 2.5 , because of both spatial variations in the meteorological and emissions changes. Reduction in the higher M8hO 3 concentrations is also estimated for all subregions and fewer days with M8hO 3 above the air quality standards in urban sites with Atlanta in the southeast benefiting most.Citation: Tagaris, E., K. Manomaiphiboon, K.-J. Liao, L. R. Leung, J.-H. Woo, S. He, P. Amar, and A. G. Russell (2007), Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States, J. Geophys.
Abstract. Emissions of air pollutants in East Asia play an important role in the regional and global atmospheric environment. In this study we evaluated the recent emission trends of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and non-methane volatile organic compounds (NMVOC) in East Asia, and projected their future emissions up until 2030 with six emission scenarios. The results will provide future emission projections for the modeling community of the model inter-comparison program for Asia (MICS-Asia). During 2005–2010, the emissions of SO2 and PM2.5 in East Asia decreased by 15 and 12%, respectively, mainly attributable to the large-scale deployment of flue gas desulfurization (FGD) at China's power plants, and the promotion of highly efficient PM removal technologies in China's power plants and cement industry. During this period, the emissions of NOx and NMVOC increased by 25 and 15%, driven by rapid increase in the emissions from China due to inadequate control strategies. In contrast, the NOx and NMVOC emissions in East Asia except China decreased by 13–17%, mainly due to the implementation of stringent vehicle emission standards in Japan and South Korea. Under current regulations and current levels of implementation, NOx, SO2, and NMVOC emissions in East Asia are projected to increase by about one-quarter over 2010 levels by 2030, while PM2.5 emissions are expected to decrease by 7%. Assuming enforcement of new energy-saving policies, emissions of NOx, SO2, PM2.5 and NMVOC in East Asia are expected to decrease by 28, 36, 28, and 15%, respectively, compared with the baseline case. The implementation of "progressive" end-of-pipe control measures would lead to another one-third reduction of the baseline emissions of NOx, and about one-quarter reduction of SO2, PM2.5, and NMVOC. Assuming the full application of technically feasible energy-saving policies and end-of-pipe control technologies, the emissions of NOx, SO2, and PM2.5 in East Asia would account for only about one-quarter, and NMVOC for one-third, of the levels of the baseline projection. Compared with previous projections, this study projects larger reductions in NOx and SO2 emissions by considering aggressive governmental plans and standards scheduled to be implemented in the next decade, and quantifies the significant effects of detailed progressive control measures on NMVOC emissions up until 2030.
With harmful ozone concentrations tied to meteorological conditions, EPA investigates the U.S. air quality implications of a changing climate. Consequently, the 03 NAAQS are most often exceeded during summertime hot spells in places with large natural or anthropogenic precursor emissions (e.g., cities and suburban areas). Table 2 The average maximum or minimum temperature and/or changes in their spatial distribution and duration, leading to a change in reaction rate coefficients and the solubility of gases in cloud water solution;The frequency and pattern of cloud cover, leading to a change in reaction rates and rates of conversion of S02to acid deposition;The frequency and intensity of stagnation episodes or a change in the mixing layer, leading to more or less mixing of polluted air with background air;Background boundary layer concentrations of water vapor, hydrocarbons, NOx, and 03, leading to more or less dilution of polluted air in the boundary layer and altering the chemical transformation rates;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.