The MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the total Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: −8.1 % for SO2, +19.2 % for NOx, +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH3, −3.4 % for PM10, −1.6 % for PM2.5, +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25° × 0.25° are developed and can be accessed from http://www.meicmodel.org/dataset-mix
Abstract. We developed a new emission inventory for Asia (Regional Emission inventory in ASia (REAS) Version 1
Abstract. We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25° × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.0 Pg (+57%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulphurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25° × 0.25° for the major sectors are available from the following URL: http://www.nies.go.jp/REAS/.
Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.