In smart interactive environments, such as digital museums or digital exhibition halls, it is important to accurately understand the user’s intent to ensure successful and natural interaction with the exhibition. In the context of predicting user intent, gaze estimation technology has been considered one of the most effective indicators among recently developed interaction techniques (e.g., face orientation estimation, body tracking, and gesture recognition). Previous gaze estimation techniques, however, are known to be effective only in a controlled lab environment under normal lighting conditions. In this study, we propose a novel deep learning-based approach to achieve a successful gaze estimation under various low-light conditions, which is anticipated to be more practical for smart interaction scenarios. The proposed approach utilizes a generative adversarial network (GAN) to enhance users’ eye images captured under low-light conditions, thereby restoring missing information for gaze estimation. Afterward, the GAN-recovered images are fed into the convolutional neural network architecture as input data to estimate the direction of the user gaze. Our experimental results on the modified MPIIGaze dataset demonstrate that the proposed approach achieves an average performance improvement of 4.53%–8.9% under low and dark light conditions, which is a promising step toward further research.
The demand for wheelchairs has increased recently as the population of the elderly and patients with disorders increases. However, society still pays less attention to infrastructure that can threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors, which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a novel system based on various convolutional neural networks (CNNs) to automatically classify the condition of sidewalks using images captured with depth and infrared modalities. Moreover, we compare the performance of training CNNs from scratch and the transfer learning approach, where the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained with self-supervised learning during transfer learning to leverage better image representations. Performance evaluation on the classification of the sidewalk condition was conducted with 100% and 10% of training data. The experimental results validate the effectiveness and feasibility of the proposed approach and bring future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.