Galectin-3, a β-galactoside-binding lectin, is elevated in obesity and type 2 diabetes mellitus, and metformin treatment reduces these galectin-3 levels. However, the role of galectin-3 in adipogenesis remains controversial. We found that 17-month-old galectin-3-deficient (lgals3(-/-)) mice had decreased body size and epididymal white adipose tissue (eWAT) without related inflammatory diseases when fed normal chow. Galectin-3 knockdown significantly reduced adipocyte differentiation in 3T3-L1 cells and also decreased the expression of peroxisome proliferator-activated receptor (PPAR)-γ, ccaat-enhancer-binding protein α, and ccaat-enhancer-binding protein β. Endogenous galectin-3 directly interacted with PPARγ, and galectin-3 ablation reduced the nuclear accumulation and transcriptional activation of PPARγ. After a 12-week high-fat diet (60% fat), lgals3(-/-) mice had lower body weight and eWAT mass than lgals3(+/+) mice. Moreover, the expression of PPARγ and other lipogenic genes was drastically decreased in the eWAT and liver of lgals3(-/-) mice. We suggest that galectin-3 directly activates PPARγ and leads to adipocyte differentiation in vitro and in vivo. Furthermore, galectin-3 might be a potential therapeutic target in metabolic syndromes as a PPARγ regulator.
As the age distribution in Korean society has gotten gradually older, the morbidity of cancer in Korea has increased accordingly. This also derives from the increase of smoking, drinking, and air pollution. Since the 1980s, in spite of the substantial expansion of surgical aspect and radiotherapy, significant number of people has still been suffering from cancer, which often ends up with death. The data of cancer registry reports the current status of nationwide cancers under the guidance of central committee of the Korean Cancer Registry in the Ministry of Health and Welfare. However, this implies several limitations because it is focused too much on the diagnosis itself. Thus, in our epidemiologic survey, we intend to develop various items to add, such as classification of anatomical primary site, staging of head and neck cancers, correlation between smoking or drinking and head and neck cancer, double primary cancers, and treatment modality by site and stage. We further expect to accomplish the accuracy and the completion of the survey data by allowing otolaryngologists let input the data, who are in charge of head and neck cancers. We truly hope that we could understand head and neck cancers of Korea systematically and precisely through this data. This understanding could hopefully make analysis of survival rate, and treatment result possible. Finally, we expect that this data could serve as an important sour- Epidemiologic Survey of Head and Neck Cancers in KoreaHead and neck cancers have never been systematically studied for clinical purposes yet in Korea. This epidemiological survey on head and neck cancer patients was undertaken from January to December 2001 in 79 otorhinolaryngology resident-training hospitals nationwide. The number of head and neck cancer patients was 1,063 cases in the year. The largest proportion of cases arose in the larynx, as many as 488 cases, which accounted for 45.9%. It was followed by, in order of frequency, oral cavity (16.5%), oropharynx (10.0%), and hypopharynx (9.5%). The male:female ratio was 5:1, and the mean age was 60.3 yr. Surgery was the predominant treatment modality in head and neck cancers: 204 (21.5%) cases were treated with only surgery, 198 (20.8%) cases were treated with surgery and radiotherapy, 207 cases (21.8%) were treated with combined therapy of surgery, radiotherapy, and chemotherapy. Larynx and hypopharynx cancers had a stronger relationship with smoking and alcohol drinking than other primary site cancers. Of them, 21 cases were found to be metastasized at the time of diagnosis into the lung, gastrointestinal tract, bone, or brain. Coexisting second primary malignancies were found in 23 cases. At the time of diagnosis, a total of 354 cases had cervical lymph node metastasis accounting for 42.0%.
Galectin-1 contains a carbohydrate-recognition domain (CRD) as a member of the lectin family. Here, we investigated whether galectin-1 regulates adipogenesis and lipid accumulation. Galectin-1 mRNA is highly expressed in metabolic tissues such as the muscle and adipose tissues. Higher mRNA expression of galectin-1 was detected in white adipose tissues (WATs) of mice that were fed a high-fat diet (HFD) than in those of mice fed a normal-fat diet (NFD). Protein expression of galectin-1 also increased during adipocyte differentiation. Galectin-1 silencing inhibited the differentiation of 3T3-L1 cells and the expression of lipogenic factors, such as PPARγ, C/EBPα, FABP4, and FASN at both mRNA and protein levels. Lactose, an inhibitor by the binding with CRD of galectin-1 in extracellular matrix, did not affect adipocyte differentiation. Galectin-1 is localized in multiple cellular compartments in 3T3-L1 cells. However, we found that DMI (dexamethasone, methylisobutylxanthine, insulin) treatment increased its nuclear localization. Interestingly, galectin-1 interacted with PPARγ. Galectin-1 overexpression resulted in increased PPARγ expression and transcriptional activity. Furthermore, we prepared galectin-1-knockout (Lgals1−/−) mice and fed a 60% HFD. After 10 weeks, Lgals1−/− mice exhibited lower body weight and gonadal WAT (gWAT) mass than wild-type mice. Fasting glucose level was also lower in Lgals1−/−mice than that in wild-type mice. Moreover, lipogenic genes were significantly downregulated in the gWATs and liver tissues from Lgals1−/− mice. Pro-inflammatory cytokines, such as CCL2, CCL3, TNFα, and F4/80, as well as macrophage markers, were also drastically downregulated in the gWATs and liver tissues of Lgals1−/− mice. In addition, Lgals1−/−mice showed elevated expression of genes involved in thermogenesis in the brown adipose tissue. Collectively, galectin-1 exacerbates obesity of mice fed HFD by increment of PPARγ expression and activation. Our findings suggest that galectin-1 could be a potential therapeutic target for obesity and needed further study for clinical application.
Although mounting evidence indicates the involvement of galectin-3 in cancer progression and metastasis, the underlying molecular mechanisms remain largely unknown. In this study, we investigated the effect and possible mechanism of galectin-3 on the migration and invasion of B16F10, a metastatic melanoma cell line, in which galectin-3 and matrix metalloproteinase-1 (MMP-1) were both found to be highly expressed. Knockdown of galectin-3 with specific siRNA reduced migration and invasion, which was associated with reduced expression of MMP-1. To further investigate the underlying mechanism, we examined the effect of galectin-3 knockdown on the activity of AP-1, a transcriptional factor regulating MMP-1 expression. We found that galectin-3 directly interacted with AP-1 and facilitated the binding of this complex to the MMP-1 promoter that drives MMP-1 transcription. Moreover, silencing of galectin-3 inhibited binding of fra-1 and c-Jun to promoter sites of MMP-1 gene. Consistent with these in vitro findings, our in vivo study demonstrated that galectin-3 shRNA treatment significantly reduced the total number of mouse lung metastatic nodules. Taken together, galectin-3 facilitates cell migration and invasion in melanoma in vitro and can induce metastasis in vivo, in part through, regulating the transcription activity of AP-1 and thereby up-regulating MMP-1 expression.
Weight loss ≥ 5 percent is sufficient to significantly reduce health risks for obese people; therefore, development of novel weight loss compounds with reduced toxicity is urgently required. After screening of natural compounds with anti-adipogenesis properties in 3T3-L1 cells, we determined that kahweol, a coffee-specific diterpene, inhibited adipogenesis. Kahweol reduced lipid accumulation and expression levels of adipogenesis and lipid accumulation-related factors. Levels of phosphorylated AKT and phosphorylated JAK2, that induce lipid accumulation, decreased in kahweol-treated cells. Particularly, kahweol treatment significantly increased AMP-activated protein kinase (AMPK) activation. We revealed that depletion of AMPK alleviated reduction in lipid accumulation from kahweol treatment, suggesting that inhibition of lipid accumulation by kahweol is dependent on AMPK activation. We detected more rapid reduction in blood glucose levels in mice administrated kahweol than in control mice. We suggest that kahweol has anti-obesity effects and should be studied further for possible therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.