We report on a novel, high-dimensional method to detect autoantibodies that are complexed with their natural autoantigens. Specifically, autoantibody-autoantigen complexes in serum or plasma are directly incubated onto a high-density antibody microarray. Detection of the bound autoantibody-antigen complex is made via fluorescently labeled anti-human immunoglobulin G or other immunoglobulin isotype secondary antibodies and quantification in a microarray scanner. Uncomplexed antibodies do not interfere with this assay. The whole process is very rapid and applicable for high-throughput screening without the need for production of proteins or immunoglobulin purification from the samples. Using these methods, we found that plasma from healthy individuals contains hundreds of autoantibodies complexed with cellular proteins. Thus, this highly sensitive, multiplex method is capable of discovering new autoantibody-antigen or circulating immune complexes many of which will likely be useful for disease detection and characterization.
We report on a high-dimensional method to globally profile glycoproteins that are modified with sialyl Lewis A or Lewis X glycans. Specifically, glycoproteins in serum or plasma are fractionated on a high-density antibody microarray (i.e., each are localized to their specific antibody spot) and are specifically detected via fluorescently labeled anti-sialyl Lewis A or anti- Lewis X antibodies with quantification in a microarray scanner. Non-glycosylated proteins or glycoproteins with other glycan motifs do not interfere with this assay. The whole process is very rapid and applicable for high-throughput screening without the need for purification of glycoproteins from the samples. Using these methods, sialyl Lewis A or Lewis X moieties were found to be expressed on many previously unreported secreted or membrane associated proteins. Furthermore, the combination of sialyl Lewis A or Lewis X content with protein level increased the ability of certain glycoproteins to distinguish 30 patients with stage III and IV colon cancer from 60 control samples. Thus, this highly sensitive method is capable of discovering novel specific glycan modifications on proteins, many of which will likely be useful for disease detection and monitoring.
ObjectiveTo discover and confirm blood-based colon cancer early-detection markers.DesignWe created a high-density antibody microarray to detect differences in protein levels in plasma from individuals diagnosed with colon cancer <3 years after blood was drawn (ie, prediagnostic) and cancer-free, matched controls. Potential markers were tested on plasma samples from people diagnosed with adenoma or cancer, compared with controls. Components of an optimal 5-marker panel were tested via immunoblotting using a third sample set, Luminex assay in a large fourth sample set and immunohistochemistry (IHC) on tissue microarrays.ResultsIn the prediagnostic samples, we found 78 significantly (t-test) increased proteins, 32 of which were confirmed in the diagnostic samples. From these 32, optimal 4-marker panels of BAG family molecular chaperone regulator 4 (BAG4), interleukin-6 receptor subunit beta (IL6ST), von Willebrand factor (VWF) and CD44 or epidermal growth factor receptor (EGFR) were established. Each panel member and the panels also showed increases in the diagnostic adenoma and cancer samples in independent third and fourth sample sets via immunoblot and Luminex, respectively. IHC results showed increased levels of BAG4, IL6ST and CD44 in adenoma and cancer tissues. Inclusion of EGFR and CD44 sialyl Lewis-A and Lewis-X content increased the panel performance. The protein/glycoprotein panel was statistically significantly higher in colon cancer samples, characterised by a range of area under the curves from 0.90 (95% CI 0.82 to 0.98) to 0.86 (95% CI 0.83 to 0.88), for the larger second and fourth sets, respectively.ConclusionsA panel including BAG4, IL6ST, VWF, EGFR and CD44 protein/glycomics performed well for detection of early stages of colon cancer and should be further examined in larger studies.
PURPOSE Estrogen receptor (ER)-positive/progesterone receptor (PR)-positive invasive ductal carcinoma accounts for ~45% of invasive breast cancer (BC) diagnoses in the U.S. Despite reductions in BC mortality attributable to mammography screening and adjuvant hormonal therapy, an important challenge remains the development of clinically useful blood-based biomarkers for risk assessment and early detection. The objective of this study was to identify novel protein markers for ER+/PR+ ductal BC. METHODS A nested case-control study was conducted within the Women’s Health Initiative (WHI) Observational Study. Pre-clinical plasma specimens, collected up to 12.5 months before diagnosis from 121 cases and 121 matched controls, were equally divided into training and testing sets and interrogated using a customized antibody array targeting >2,000 proteins. RESULTS Statistically significant differences (P<0.05) in matched case versus control signals were observed for 39 candidates in both training and testing sets, and four markers (CSF2, RYBP, TFRC, ITGB4) remained significant after Bonferroni correction (P<2.03 ×10−5). A multivariate modeling procedure based on elastic net regression with Monte Carlo cross-validation achieved an estimated AUC of 0.75 (SD 0.06). Most candidates did not overlap with those described previously for triple-negative BC, suggesting sub-type specificity. Gene set enrichment analyses identified two GO gene sets as upregulated in cases—microtubule cytoskeleton and response to hormone stimulus (P<0.05, q<0.25). CONCLUSIONS This study has identified a pool of novel candidate plasma protein biomarkers for ER+/PR+ ductal BC using pre-diagnostic biospecimens. Further validation studies are needed to confirm these candidates and assess their potential clinical utility for BC risk assessment/early detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.