TLR4 and MD-2 form a heterodimer that recognizes LPS (lipopolysaccharide) from Gram-negative bacteria. Eritoran is an analog of LPS that antagonizes its activity by binding to the TLR4-MD-2 complex. We determined the structure of the full-length ectodomain of the mouse TLR4 and MD-2 complex. We also produced a series of hybrids of human TLR4 and hagfish VLR and determined their structures with and without bound MD-2 and Eritoran. TLR4 is an atypical member of the LRR family and is composed of N-terminal, central, and C-terminal domains. The beta sheet of the central domain shows unusually small radii and large twist angles. MD-2 binds to the concave surface of the N-terminal and central domains. The interaction with Eritoran is mediated by a hydrophobic internal pocket in MD-2. Based on structural analysis and mutagenesis experiments on MD-2 and TLR4, we propose a model of TLR4-MD-2 dimerization induced by LPS.
Lipopolysaccharide, the endotoxin of Gram-negative bacteria, induces extensive immune responses that can lead to fatal septic shock syndrome. The core receptors recognizing lipopolysaccharide are CD14, TLR4, and MD-2. CD14 binds to lipopolysaccharide and presents it to the TLR4/MD-2 complex, which initiates intracellular signaling. In addition to lipopolysaccharide, CD14 is capable of recognizing a few other microbial and cellular products. Here, we present the first crystal structure of CD14 to 2.5 Å resolution. A large hydrophobic pocket was found on the NH 2 -terminal side of the horseshoelike structure. Previously identified regions involved in lipopolysaccharide binding map to the rim and bottom of the pocket indicating that the pocket is the main component of the lipopolysaccharide-binding site. Mutations that interfere with lipopolysaccharide signaling but not with lipopolysaccharide binding are also clustered in a separate area near the pocket. Ligand diversity of CD14 could be explained by the generous size of the pocket, the considerable flexibility of the rim of the pocket, and the multiplicity of grooves available for ligand binding.
ABCB10 is one of the three ATP-binding cassette (ABC) transporters found in the inner membrane of mitochondria. In mammals ABCB10 is essential for erythropoiesis, and for protection of mitochondria against oxidative stress. ABCB10 is therefore a potential therapeutic target for diseases in which increased mitochondrial reactive oxygen species production and oxidative stress play a major role. The crystal structure of apo-ABCB10 shows a classic exporter fold ABC transporter structure, in an open-inwards conformation, ready to bind the substrate or nucleotide from the inner mitochondrial matrix or membrane. Unexpectedly, however, ABCB10 adopts an openinwards conformation when complexed with nonhydrolysable ATP analogs, in contrast to other transporter structures which adopt an open-outwards conformation in complex with ATP. The three complexes of ABCB10/ATP analogs reported here showed varying degrees of opening of the transport substrate binding site, indicating that in this conformation there is some flexibility between the two halves of the protein. These structures suggest that the observed plasticity, together with a portal between two helices in the transmembrane region of ABCB10, assist transport substrate entry into the substrate binding cavity. These structures indicate that ABC transporters may exist in an open-inwards conformation when nucleotide is bound. We discuss ways in which this observation can be aligned with the current views on mechanisms of ABC transporters.ABC mitochondrial erythroid | X-ray crystallography | human membrane protein structure | nucleotide complex | cardiolipin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.