The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion sensors.
DNA-wrapped nanotubes of both multiwalled and single-walled carbon nanotubes were obtained by a solid-state mechanochemical reaction. Scanning electron microscopic images show that the nanotubes were cut into shorter lengths and were fully covered with DNA, which was further confirmed by fluorescence microscopy. This resulted in a high aqueous solubility of the products with a stability of >6 months. The results show that nanotubes were cut also with uniform distribution where >90% of the multiwalled products were 500 nm to 3 microm and 80% of the single-walled products were 250 nm to 1 microm in length, respectively. UV-vis spectra and gel electrophorosis show that the DNA in the product is intact. This facile technique for obtaining supramolecularly masked, water-soluble carbon nanotubes by a solid-state reaction has a great potential for both biological and nonbiological applications of nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.