Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder of the central nervous system (CNS) that is defined by a CAG expansion in exon 1 of the huntingtin gene leading to the production of mutant huntingtin (mHtt). To date, the disease pathophysiology has been thought to be primarily driven by cell-autonomous mechanisms, but, here, we demonstrate that fibroblasts derived from HD patients carrying either 72, 143 and 180 CAG repeats as well as induced pluripotent stem cells (iPSCs) also characterized by 143 CAG repeats can transmit protein aggregates to genetically unrelated and healthy host tissue following implantation into the cerebral ventricles of neonatal mice in a non-cell-autonomous fashion. Transmitted mHtt aggregates gave rise to both motor and cognitive impairments, loss of striatal medium spiny neurons, increased inflammation and gliosis in associated brain regions, thereby recapitulating the behavioural and pathological phenotypes which characterizes HD. In addition, both in vitro work using co-cultures of mouse neural stem cells with 143 CAG fibroblasts and the SH-SY5Y human neuroblastoma cell line as well as in vivo experiments conducted in newborn wild-type mice suggest that exosomes can cargo mHtt between cells triggering the manifestation of HD-related behaviour and pathology. This is the first evidence of human-to-mouse prion-like propagation of mHtt in the mammalian brain; a finding which will help unravel the molecular bases of HD pathology as well as to lead to the development of a whole new range of therapies for neurodegenerative diseases of the CNS.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-016-1582-9) contains supplementary material, which is available to authorized users.
Premature ovarian failure (POF) is a major side effect of chemotherapy in young cancer patients. To develop pharmaceutical agents for preserving fertility, it is necessary to understand the mechanisms responsible for chemotherapy-induced follicle loss. Here, we show that treatment with cisplatin, a widely used anticancer drug, depleted the dormant follicle pool in mouse ovaries by excessive activation of the primordial follicles, without inducing follicular apoptosis. Moreover, we show that co-treatment with the antioxidant melatonin prevented cisplatin-induced disruption of the follicle reserve. We quantified the various stages of growing follicles, including primordial, primary, secondary, and antral, to demonstrate that cisplatin treatment alone significantly decreased, whereas melatonin co-treatment preserved, the number of primordial follicles in the ovary. Importantly, analysis of the PTEN/AKT/FOXO3a pathway demonstrated that melatonin significantly decreased the cisplatin-mediated inhibitory phosphorylation of PTEN, a key negative regulator of dormant follicle activation. Moreover, melatonin prevented the cisplatin-induced activating phosphorylation of AKT, GSK3β, and FOXO3a, all of which trigger follicle activation. Additionally, we show that melatonin inhibited the cisplatin-induced inhibitory phosphorylation and nuclear export of FOXO3a, which is required in the nucleus to maintain dormancy of the primordial follicles. These findings demonstrate that melatonin attenuates cisplatin-induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.