This review demonstrates directional photofluidization lithography (DPL), which makes it possible to fabricate a generic and sophisticated micro/nanoarchitecture that would be difficult or impossible to attain with other methods. In particular, DPL differs from many of the existing micro/nanofabrication methods in that the post-treatment (i.e., photofluidization), after the preliminary fabrication process of the original micro/nanostructures, plays a pivotal role in the various micro/nanostructural evolutions including the deterministic reshaping of architectures, the reduction of structural roughness, and the dramatic enhancement of pattern resolution. Also, DPL techniques are directly compatible with a parallel and scalable micro/nanofabrication. Thus, DPL with such extraordinary advantages in micro/nanofabrication could provide compelling opportunities for basic micro/nanoscale science as well as for general technology applications.
Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst supports.
Highly ordered metallic nanostructures have attracted an increasing interest in nanoscale electronics, photonics, and spectroscopic imaging. However, methods typically used for fabricating metallic nanostructures, such as direct writing and template-based nanolithography, have low throughput and are, moreover, limited to specific fabricated shapes such as holes, lines, and prisms, respectively. Herein, we demonstrate directional photofluidization lithography (DPL) as a new method to address the aforementioned problems of current nanolithography. The key idea of DPL is the use of photoreconfigurable polymer arrays to be molded in metallic nanostructures instead of conventional colloids or cross-linked polymer arrays. The photoreconfiguration of polymers by directional photofluidization allows unprecedented control over the sizes and shapes of metallic nanostructures. Besides the capability for precise control of structural features, DPL ensures scalable, parallel, and cost-effective processing, highly compatible with high-throughput fabrication. Therefore, DPL can expand not only the potential for specific metallic nanostructure applications but also large-scale innovative nanolithography.
Hierarchically ordered, monolithic surface reliefs have attracted a great deal of interest due to their applications in advanced photonics and interface sciences. While many impressive achievements in fabrication of such surface reliefs have been made over the last decade, all established methods are still restricted by a number of factors, such as limited control of structural features, inherently induced structural defects, impractically low throughput, and technical barriers caused by mechanical contact. Herein, a deterministic and scalable fabrication of hierarchically ordered, monolithic surface reliefs by holographic photofluidization of azopolymer line arrays is demonstrated. In particular, it is shown that the structural features of monolithic surface reliefs including shapes and modulation heights can be deterministically tunable by adjusting the polarization and irradiation time of the holographic interference pattern. Moreover, by a direct visualization of azopolymeric flow according to the light polarization, a long‐standing question about the origin of surface‐relief‐grating formation on azopolymer film is addressed in terms of polymeric flows. Finally, as proof of concept for the practical application of the obtained hierarchical surface reliefs, dependence of wetting properties on modulating height is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.