Lactococcus lactis subsp. cremoris is a lactic acid bacterium commonly used in the cheese manufacturing industry. It is known to produce antibacterial peptides and has recently received attention for its role as a probiotic strain. Here, we report the isolation of a new strain, Lactococcus lactis subsp. cremoris RPG-HL-0136 (RPG0136) from dried compost, which exhibits strong antibacterial activity. When RPG0136 was fed to mice, it increased the intestinal population of two beneficial bacteria, Lactobacillus and Bifidobacterium, whereas it decreased the intestinal population of two harmful bacteria, Bacteroides and Enterobacter. In addition, it increased the concentration of short-chain fatty acids, including acetic acid, propionic acid, and butyric acid, with a simultaneous decrease in pH, and accelerated the catabolic degradation of proteins, lipids, and starch. Lastly, RPG0136 increased the plasma IgG and intestinal mucosal SIgA concentrations and upregulated Reg3r, MUC1, and MUC2 expression to improve the intestinal mucosal immune function. The results of this study suggest that RPG0136 is a potential probiotic strain that supports the growth of a beneficial microbiome by promoting the synthesis of organic acids and enhancing intestinal immune function.
Microglia are the macrophages that reside in the brain. Activated microglia induces further activation of astrocytes and neuronal cells for mounting an immune response. However, activated microglia release neurotoxic mediators causing neuroinflammation, which is associated with chronic etiology of neurodegenerative diseases. We investigated the effect of ethanol extract of Physalis alkekengi L. var. francheti fruit (PAFE) on neuronal cell death mediated by activated microglia. PAFE decreased NO production and IL-6 secretion in LPS-stimulated BV-2 and primary microglial cells without reducing cell viability. Consistently, treatment with PAFE decreased iNOS and COX-2 expression and ERK phosphorylation in LPS-stimulated BV-2 cells. Finally, apoptosis of N2a cells grown in conditioned media prepared from LPS-stimulated BV-2 cells containing PAFE was inhibited via downregulation of the Bax/Bcl-2 ratio. Taken together, PAFE alleviates neuronal cell death by reducing neurotoxic mediators such as NO and IL-6 from activated microglia. Therefore, it could be a potential candidate to treat neurodegenerative diseases caused by chronic neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.