The geotechnical properties of solid waste soils for use as sub-base materials in road construction were investigated. A series of field tests and laboratory tests were performed to assess the physical and mechanical properties of the solid waste soils sampled from a landfill site, near to a riverside, which had been reclaimed over the last two decades. The tests showed that geotechnical properties are clearly affected by the magnitude of organic matter content. As the organic matter content increases, the maximum dry unit weight, the shear strength and bearing capacity of ground decrease, while the void ratio and compressibility increase. If the organic matter content is more than about 8% in solid waste soils, it is not suitable for use as a sub-base material in road construction due to the significant decrease of shear strength and bearing capacity.
Most food waste is incinerated and reclaimed in Korea. Due to the development of industry, soil and groundwater pollution are serious. The purpose of this study was to study recycled materials and eco-friendly remediation methods to prevent secondary pollution after remediation. In this study, recycled food waste ash was filled in a permeable reactive barrier (PRB) and used as a heavy metal adsorption material. In situ remediation electrokinetic techniques (EK) and acetic acid were used. Electrokinetic remediation is a technology that can remove various polluted soils and pollutants, and is an economical and highly useful remediation technique. Thereafter, the current density increased constantly over time, and it was confirmed that it increased after electrode exchange and then decreased. Based on this result, the acetic acid was constantly injected and it was reconfirmed through the water content after the end of the experiment. In the case of both heavy metals, the removal efficiency was good after 10 days of operation and 8 days after electrode exchange, but, in the case of lead, it was confirmed that experiments are needed by increasing the operation date before electrode exchange. It was confirmed that the copper removal rate was about 74% to 87%, and the lead removal rate was about 11% to 43%. After the end of the experiment, a low pH was confirmed at x/L = 0.9, and it was also confirmed that there was no precipitation of heavy metals and there was a smooth movement by the enhancer and electrolysis after electrode exchange.
In order to recycle the incineration fine bottom ash generated from municipal solid waste as a fine aggregate construction material(\4.75 mm), a series of uniaxial compression tests were carried out according to the mixing ratio of bottom ash, the curing temperature, the watercement ratio, the mixing ratio of expanded poly styrene (EPS), and the curing time. As the results of tests, the compression strengths cured 28 days of all specimens prepared with different mixing ratios are ranged between 87 and 220 kg/cm 2 . The water content of the hardened cement mortar is not much different with the curing time. Also, the water content is increased with increasing the mixing ratio of bottom ash, the water-cement ratio, and the mixing ratio of EPS. The unit weight of the hardened cement mortar is decreased with increasing the mixing ratio of bottom ash and the mixing ratio of EPS. The compression strength of the hardened cement mortar is decreased with increasing the mixing ratio of bottom ash. The compression strength of the hardened cement mortar cured at 30 ± 2°C and 40 ± 2°C is bigger than that of the cement mortar cured at normal temperature (20 ± 2°C). However, the compression strength of the hardened cement mortar cured at 30 ± 2°C is bigger than that of the cement mortar cured at 40 ± 2°C. The compression strength is increased at the range from 0.55 to 0.6 of water-cement ratio, and then the compression strength is decreased over 0.65 of water-cement ratio. Meanwhile, the compression strength of the hardened cement mortar is decreased with increasing the mixing ratio of EPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.