The velocity-storage circuit participates in the vestibulopostural reflex, but its role in the postural reflex requires further elucidation. The velocity-storage circuit differentiates gravitoinertial information into gravitational and inertial cues using rotational cues. This implies that a false rotational cue can cause an erroneous estimation of gravity and inertial cues. We hypothesized the velocity-storage circuit is a common gateway for all vestibular reflex pathways and tested that hypothesis by measuring the postural and perceptual responses from a false inertial cue estimated in the velocity-storage circuit. Twenty healthy human participants (40.5 ±8.2 years old, six men) underwent two different sessions of earth-vertical axis rotations at 120°/s for 60 s. During each session, the participants were rotated clockwise and then counterclockwise with two different starting head positions (head-down and head-up). During the first (control) session, the participants kept a steady head position at the end of rotation. During the second (test) session, the participants changed their head position at the end of rotation, from head-down to head-up or vice versa. The head position and inertial motion perception at the end of rotation were aligned with the inertia direction anticipated by the velocity-storage model. The participants showed a significant correlation between postural and perceptual responses. The velocity-storage circuit appears to be a shared neural integrator for the vestibulopostural reflex and vestibular perception. Since the postural responses depended on the inertial direction, the postural instability in vestibular disorders may be the consequence of the vestibulopostural reflex responding to centrally estimated false vestibular cues.SIGNIFICANCE STATEMENT:The velocity-storage circuit appears to participate in the vestibulopostural reflex, which stabilizes the head and body position in space. However, it is still unclear whether the velocity-storage circuit for the postural reflex is in common with that involved in eye movement and perception. We evaluated the postural and perceptual responses to a false inertial cue estimated by the velocity-storage circuit. The postural and perceptual responses were consistent with the inertia direction predicted in the velocity-storage model and were correlated closely with each other. These results show that the velocity-storage circuit is a shared neural integrator for vestibular-driven responses and suggest that the vestibulopostural response to a false vestibular cue is the pathomechanism of postural instability clinically observed in vestibular disorders.
This study aimed to evaluate vestibular perception in patients with unilateral vestibulopathy. We recruited 14 patients (9 women, mean age = 59.3 ± 14.3) with unilateral vestibulopathy during the subacute or chronic stage (disease duration = 6 days to 25 years). For the evaluation of position perception, the patients had to estimate the position after whole-body rotation in the yaw plane. The velocity/acceleration perception was evaluated by acquiring decisions of patients regarding which direction would be the faster rotation after a pair of ipsi- and contra-lesional rotations at various velocity/acceleration settings. The duration perception was assessed by collecting decisions of patients for longer rotation directions at each pair of ipsi- and contra-lesional rotations with various velocities and amplitudes. Patients with unilateral vestibulopathy showed position estimates and velocity/acceleration discriminations comparable to healthy controls. However, in duration discrimination, patients had a contralesional bias such that they had a longer perception period for the healthy side during the equal duration and same amplitude rotations. For the complex duration task, where a longer duration was assigned to a smaller rotation amplitude, the precision was significantly lower in the patient group than in the control group. These results indicate persistent impairments of duration perception in unilateral vestibulopathy and favor the intrinsic and distributed timing mechanism of the vestibular system. Complex perceptual tasks may be helpful to disclose hidden perceptual disturbances in unilateral vestibular hypofunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.