Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.
It has been shown that dysregulation of IGF-1 signaling is associated with tumor incidence and progression, whereas blockade of the signaling can effectively inhibit carcinogenesis. Although several mechanisms of anticancer activity of quercetin were proposed, molecular targets of quercetin have not been identified yet. Hence, we assessed the effect of quercetin on IGF-1 signaling inhibition in BK5.IGF-1 transgenic (Tg) mice, which over-expresses IGF-1 in the skin epidermis. A quercetin diet (0.02% wt/wt) for 20 weeks remarkably delayed the incidence of skin tumor by 2 weeks and reduced tumor multiplicity by 35% in a 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two stage mouse skin carcinogenesis protocol. Moreover, skin hyperplasia in Tg mice was significantly inhibited by a quercetin supplementation. Further analysis of the MT1/2 skin papilloma cell line showed that a quercetin treatment dose dependently suppressed IGF-1 induced phosphorylation of the IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1, Akt and S6K; however, had no effect on the phosphorylation of PTEN. Additionally, the quercetin treatment inhibited IGF-1 stimulated cell proliferation in a dose dependent manner. Taken together, these data suggest that quercetin has a potent anticancer activity through the inhibition of IGF-1 signaling.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.