The common midpoint (CMP) processing technique has been shown to be effective in improving the results of ground‐penetrating radar (GPR) profiling. When radar data are collected with the CMP multioffset geometry, stacking increases the signal‐to‐noise ratio of subsurface radar reflections and results in an improved subsurface image. An important aspect of CMP processing is normal‐moveout velocity analysis. Our objectives are to show the effect of multiple velocity analyses on the stacked radar image and particularly, to demonstrate that this velocity information can also be used to determine subsurface water content. Most GPR surveys are very limited in spatial extent and assume that within the survey range, radar velocity structure in the shallow subsurface can be adequately approximated by a single velocity function in data processing. In this study, we show that variation in radar velocity can be quite significant and that the stacked profile improves as the number of velocity analysis locations is increased. Interval velocities can be calculated from the normal moveout velocities derived in the CMP velocity analysis. With some reasonable assumptions about subsurface conditions necessary for radar propagation, interval velocity can be converted to an estimate of volumetric water content. Therefore, by collecting GPR data in the multioffset CMP geometry, not only is the radar profile improved but it also allows for an interpretation of subsurface variation in water content. We show the application of these techniques to multioffset GPR data from the Chalk River test area operated by Atomic Energy of Canada Limited.
Background Epidemiologic characteristics of nontuberculous mycobacterial (NTM) disease remain largely unknown. The objective of this study was to evaluate incidence, prevalence, and mortality of NTM infection in a large nationwide population-based cohort in Korea. Methods Data of the National Health Insurance Service database, an extensive health-related database including most Korean residents, were used. Adults with a primary diagnosis of NTM as determined by International Classification of Disease-Tenth Revision coding (A31) were identified between 2003 and 2016. Incidence, prevalence, and mortality of NTM infection were analyzed. Results A total of 46,194 individuals had a primary diagnosis of NTM infection. Their mean age was 55.8 years. Of these subjects, 61.1% were females. Annual age-adjusted incidence and prevalence of NTM infection tended to increase rapidly from 2003 to 2016. Age-adjusted incidence and prevalence was 17.9 and 33.3 per 100,000 population in 2016. The incidence and prevalence were higher in females and the elderly. The 5-year mortality rate in the population with NTM infection was 17.8%. The standardized mortality ratio of patients with NTM infection to the general population was 2.16 (95% confidence interval: 2.10 to 2.22). Conclusions This large population-based study showed that the incidence and prevalence of NTM infection in Korea increased rapidly from 2003 to 2016. They were higher in women and the elderly. The mortality rate in the population with NTM infection was higher than that in the general population.
The first crustal‐scale controlled source seismic refraction experiment in the southern Korean Peninsula, KCRUST2002, was carried out along a 300‐km long profile across this peninsula in December 2002. Iterative processing and modeling produced a laterally varying layered crustal velocity model. The crust is thickest (34 km) below the Okcheon fold belt in the middle of the transect and thinnest (28 km) at the eastern end where the Cretaceous Gyeongsang basin is characterized by 5 km of low velocity material that constitutes the upper crust. The P velocities in upper and lower crust range from 5.4 to 6.0 km/s and from 6.4 to 6.7 km/s, respectively. The average crustal Poisson's ratio is found to be 0.25–0.27 (Vp/Vs = 1.73−1.78) along the profile. A mid‐crustal velocity discontinuity is recognized in the northwestern part of the transect. The underlying mantle has velocities in the range of 7.9–8.1 km/s.
Objective: Leucyl-tRNA synthetase (LRS) is an aminoacyl-tRNA synthetase catalyzing ligation of leucine to its cognate tRNA and is involved in the activation of mTORC1 by sensing cytoplasmic leucine. In this study, the usefulness of LRS as a therapeutic target of non-small cell lung cancer (NSCLC) and the anticancer effect of the LRS inhibitor, BC-LI-0186, was evaluated. Methods: LRS expression and the antitumor effect of BC-LI-0186 were evaluated by immunohistochemical staining, immunoblotting, and live cell imaging. The in vivo antitumor effect of BC-LI-0186 was evaluated using Lox-Stop-Lox (LSL) K-ras G12D mice. Results: LRS was frequently overexpressed in NSCLC tissues, and its expression was positively correlated with mTORC1 activity. The guanosine-5’-triphosphate (GTP) binding status of RagB was related to the expression of LRS and the S6K phosphorylation. si RNA against LRS inhibited leucine-mediated mTORC1 activation and cell growth. BC-LI-0186 selectively inhibited phosphorylation of S6K without affecting phosphorylation of AKT and leucine-mediated co-localization of Raptor and LAMP2 in the lysosome. BC-LI-0186 induced cleaved poly (ADP-ribose) polymerase (PARP) and caspase-3 and increase of p62 expression, showing that it has the autophagy-inducing property. BC-LI-0186 has the cytotoxic effect at nanomolar concentration and its GI 50 value was negatively correlated with the degree of LRS expression. BC-LI-0186 showed the antitumor effect, which was comparable with that of cisplatin, and mTORC1 inhibitory effect in a lung cancer model. Conclusions: BC-LI-0186 inhibits the noncanonical mTORC1-activating function of LRS. These results provide a new therapeutic strategy for NSCLC and warrant future clinical development by targeting LRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.