Toll-like receptors (TLRs) are known to recognize not only pathogen-associated molecular patterns but also danger-associated molecular patterns. Recent studies have characterized the expression levels and functions of TLRs in human epidermal cells. However, the characteristics of TLR family members in human dermal fibroblasts have not been thoroughly studied. Therefore, the present study systematically investigated the expression levels of TLRs and their functional responses to each ligand in skin fibroblasts. All 10 TLRs are expressed in skin fibroblasts. Stimulation of skin fibroblasts with each TLR ligand resulted in an increase of the interleukin-6 (IL-6), IL-8 and matrix metalloproteinase-1 proteins, indicating that ≥ 9 TLRs in skin fibroblasts are functionally active. Furthermore, stimulating skin fibroblasts with TLR1/2, 3 and 4 ligands induced the phosphorylation of inhibitor of nuclear factor κBα and the active phosphorylation of extracellular-signal regulated kinase 1/2. The expression level of each TLR was much higher in fibroblasts compared to keratinocytes. In particular, the fold-increase in IL-6 and IL-8 mRNA levels upon exposure to a TLR1/2 ligand was much higher in fibroblasts compared to keratinocytes, which appears to reflect the difference in expression levels of TLR1 and 2 between fibroblasts and keratinocytes. Taken together, these results show that all 10 TLRs are constitutively expressed and functional (except TLR10) in skin fibroblasts and suggest that TLRs in skin fibroblasts may play an important role in the detection of and response to different classes of pathogens and danger signals.
The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.
Since prostate growth is governed by the androgen signaling pathway, blockade of the pathway is regarded as an appropriate strategy for the treatment of benign prostatic hyperplasia (BPH). Panax ginseng is known to have various pharmacological activities. Of several products of its root, red ginseng, having many bioactive ginsenosides, is most popularly used in Korea, and recently has been reported to control the proliferation of cancer cells. We here tested the effect of a water extract of Korean red ginseng (WKRG) on testosterone-induced prostate hyperplasia. WKRG (daily intraperitoneal injection) prevented prostate overgrowth and epithelial thickening induced by testosterone in rats, and suppressed a rat prostate kallikrein-S3. In human prostate cells, WKRG inhibited testosterone-induced cell proliferation, arrested cell cycle by inducing p21 and p27, and induced apoptosis. Testosterone-induced expression of human kallikrein-3 mRNA and activation of androgen receptor (AR) were effectively inhibited by WKRG. Of the major ginsenosides included in WKRG, 20(S)-Rg3 was identified to repress AR activity and to attenuate prostate cell growth during testosterone stimulation. Moreover, 20(S)-Rg3 downregulated AR by facilitating the degradation of AR protein. WKRG and 20(S)-Rg3 were found to have new pharmacological activities against testosterone-induced prostate overgrowth. Given that red ginseng has been used safely in Asia for 1000 years, red ginseng and 20(S)-Rg3 could be potential therapeutic regimens for treating BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.