Myoblast fusion is essential for the formation of skeletal muscle myofibres. Studies have shown that phosphatidylserine is necessary for myoblast fusion, but the underlying mechanism is not known. Here we show that the phosphatidylserine receptor stabilin-2 acts as a membrane protein for myoblast fusion during myogenic differentiation and muscle regeneration. Stabilin-2 expression is induced during myogenic differentiation, and is regulated by calcineurin/NFAT signalling in myoblasts. Forced expression of stabilin-2 in myoblasts is associated with increased myotube formation, whereas deficiency of stabilin-2 results in the formation of small, thin myotubes. Stab2-deficient mice have myofibres with small cross-sectional area and few myonuclei and impaired muscle regeneration after injury. Importantly, myoblasts lacking stabilin-2 have reduced phosphatidylserine-dependent fusion. Collectively, our results show that stabilin-2 contributes to phosphatidylserine-dependent myoblast fusion and provide new insights into the molecular mechanism by which phosphatidylserine mediates myoblast fusion during muscle growth and regeneration.
The E3 ubiquitin (Ub)-protein ligases (E3s) play a role as regulators of protein trafficking and degradation. We aimed to integrate the profile of E3s in rat kidney and examine the changes in protein abundance of the selected E3s in response to 1-deamino-8-D-arginine vasopressin (dDAVP) stimulation/withdrawal. Sprague-Dawley rats were infused with vehicle (n = 13), dDAVP for 5 days (n = 13), or dDAVP was withdrawn for periods (15 min, 30 min, 1, 3, 6, 12, or 24 h) after 5-day infusion (n = 46). Total RNA was isolated from the inner medulla (IM) for transcriptome analysis. Plasma membrane (PM)- or intracellular vesicle (ICV)-enriched fractions of whole kidney were immunoisolated for liquid chromatography-tandem mass spectrometry analysis. dDAVP infusion for 5 days (D5d) significantly increased urine osmolality, which was maintained during 3-h withdrawal of dDAVP after 5-day infusion (D5d-3h). Consistent with this, aquaporin-2 (AQP2) expression in the PM fractions of D5d and D5d-3h increased, whereas AQP2 expression in the ICV fractions of D5d-3h was further increased, indicating internalization of AQP2. Transcriptome analysis revealed 86 genes of E3s and LC-MS/MS analysis demonstrated 16 proteins of E3s. Among these, seven E3s (BRCA1, UBR4, BRE1B, UHRF1, NEDD4, CUL5, and FBX6) were shared. RT-PCR demonstrated mRNA expressions of the seven identified E3s in the kidney, and immunoblotting demonstrated changes in protein abundance of the selected E3s (BRE1B, NEDD4, and CUL5) in response to dDAVP stimulation/withdrawal or lithium-induced nephrogenic diabetes insipidus. The rate of AQP2 degradation was retarded in mpkCCDc14 cells with small interfering RNA-mediated knockdown of NEDD4 or CUL5. Taken together, identified E3s could be involved in the degradation of proteins associated with vasopressin-induced urine concentration.
AS160, a novel Akt substrate of 160 kDa, contains a Rab GTPase-activating protein (GAP) domain. The present study examined the role of Akt and AS160 in aquaporin-2 (AQP2) trafficking. The main strategy was to examine the changes in AQP2 translocation in response to small interfering RNA (siRNA)-mediated AS160 knockdown in mouse cortical collecting duct cells (M-1 cells and mpkCCDc14 cells). Short-term dDAVP treatment in M-1 cells stimulated phosphorylation of Akt (S473) and AS160, which was also seen in mpkCCDc14 cells. Conversely, the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002 diminished phosphorylation of Akt (S473) and AS160. Moreover, siRNA-mediated Akt1 knockdown was associated with unchanged total AS160 but decreased phospho-AS160 expression, indicating that phosphorylation of AS160 is dependent on PI3K/Akt pathways. siRNA-mediated AS160 knockdown significantly decreased total AS160 and phospho-AS160 expression. Immunocytochemistry revealed that AS160 knockdown in mpkCCDc14 cells was associated with increased AQP2 density in the plasma membrane [135 ± 3% of control mpkCCDc14 cells (n = 65), P < 0.05, n = 64] despite the absence of dDAVP stimulation. Moreover, cell surface biotinylation assays of mpkCCDc14 cells with AS160 knockdown exhibited significantly higher AQP2 expression [150 ± 15% of control mpkCCDc14 cells (n = 3), P < 0.05, n = 3]. Taken together, PI3K/Akt pathways mediate the dDAVP-induced AS160 phosphorylation, and AS160 knockdown is associated with higher AQP2 expression in the plasma membrane. Since AS160 contains a GAP domain leading to a decrease in the active GTP-bound form of AS160 target Rab proteins for vesicle trafficking, decreased expression of AS160 is likely to play a role in the translocation of AQP2 to the plasma membrane.
It has been reported that several proteins [heat shock protein 70 (Hsp70 and Hsc70), annexin II, and tropomyosin 5b] interact with the Ser(256) residue on the COOH terminus of aquaporin-2 (AQP2), where vasopressin-induced phosphorylation occurs for mediating AQP2 trafficking. However, it remains unknown whether these proteins, particularly Hsp70, play a role in AQP2 trafficking. Semiquantitative immunoblotting revealed that renal expression of AQP2 and Hsp70 was significantly increased in water-restricted or dDAVP-infused rats. In silico analysis of the 5'-flanking regions of AQP2, Hsp70-1, and Hsp70-2 genes revealed that transcriptional regulator binding elements associated with cAMP response were identified at both the Hsp70-1 and Hsp70-2 promoter regions, in addition to AQP2. Luciferase reporter assay demonstrated the significant increase of luminescence after dDAVP stimulation (10(-8) M, 6 h) in the LLC-PK1 cells transfected with luciferase vector containing 1 kb of the 5'-flanking region of Hsp70-2 gene. Hsp70-2 protein expression was also increased in mpkCCDc14 cells treated by dDAVP in a concentration-dependent manner. Cell surface biotinylation analysis demonstrated that forskolin (10(-5) M, 15 min)-induced AQP2 targeting to the apical plasma membrane was significantly attenuated in the mpkCCDc14 cells with Hsp70-2 knockdown. Moreover, forskolin-induced AQP2 phosphorylation (Ser(256)) was not significantly induced in the mpkCCDc14 cells with Hsp70-2 knockdown. In contrast, Hsp70-2 knockdown did not affect the dDAVP-induced AQP2 abundance. In addition, siRNA-directed knockdown of Hsp70 significantly decreased cell viability. The results suggest that Hsp70 is likely to play a role in AQP2 trafficking to the apical plasma membrane, partly through affecting AQP2 phosphorylation at Ser(256) and cell viability.
Nielsen S, Kwon TH. Tankyrase-mediated -catenin activity regulates vasopressin-induced AQP2 expression in kidney collecting duct mpkCCDc14 cells. Am J Physiol Renal Physiol 308: F473-F486, 2015. First published December 17, 2014 doi:10.1152/ajprenal.00052.2014.-Aquaporin-2 (AQP2) mediates arginine vasopressin (AVP)-induced water reabsorption in the kidney collecting duct. AVP regulates AQP2 expression primarily via Gs␣/cAMP/PKA signaling. Tankyrase, a member of the poly(ADP-ribose) polymerase family, is known to mediate Wnt/-catenin signaling-induced gene expression. We examined whether tankyrase plays a role in AVP-induced AQP2 regulation via ADP-ribosylation of G protein-␣ (G␣) and/or -catenin-mediated transcription of AQP2. RT-PCR and immunoblotting analysis revealed the mRNA and protein expression of tankyrase in mouse kidney and mouse collecting duct mpkCCDc14 cells. dDAVP-induced AQP2 upregulation was attenuated in mpkCCDc14 cells under the tankyrase inhibition by XAV939 treatment or small interfering (si) RNA knockdown. Fluorescence resonance energy transfer image analysis, however, revealed that XAV939 treatment did not affect dDAVP-or forskolin-induced PKA activation. Inhibition of tankyrase decreased dDAVP-induced phosphorylation of -catenin (S552) and nuclear translocation of phospho--catenin. siRNA-mediated knockdown of -catenin decreased forskolin-induced AQP2 transcription and dDAVP-induced AQP2 expression. Moreover, inhibition of phosphoinositide 3-kinase/Akt, which was associated with decreased nuclear translocation of -catenin, diminished dDAVP-induced AQP2 upregulation, further indicating that -catenin mediates AQP2 expression. Taken together, tankyrase plays a role in AVP-induced AQP2 regulation, which is likely via -catenin-mediated transcription of AQP2, but not ADP-ribosylation of G␣. The results provide novel insights into vasopressin-mediated urine concentration and homeostasis of body water metabolism.aquaporin-2; -catenin; collecting duct; tankyrase; vasopressin AQUAPORINS (AQPS) ARE WATER channel proteins that transport water molecules across the biomembrane. Aquaporin-2 (AQP2) is the key water channel protein expressed in the kidney connecting tubules and collecting ducts for arginine vasopressin (AVP)-mediated water reabsorption (5,10,12,20,22). Vasopressin V2-receptor (V2R)-mediated cAMP/PKA signaling has been shown to be a principal pathway for both AQP2 trafficking and protein expression via activation of G s ␣-mediated adenylyl cyclase activity. Increased intracellular cAMP concentration and activation of PKA phosphorylate cAMP-response element binding protein, which increases transcription of the AQP2 gene (41).The AVP-induced cAMP/PKA signaling pathway interacts with other signals, such as phosphoinositide pathways (19,31) and Wnt/-catenin signaling (34). However, cross talk between AVP and Wnt/-catenin signaling in the kidney collecting ducts, particularly for the regulation of AVP-induced AQP2 expression, is unknown. Previous studies demonstrated that AVP-mediate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.