The objective of this study was to investigate the possibility of using low-amperage electrical treatment (LAET) as a selective bacteriocide. Mixtures containing Escherichia coli, Staphylococcus aureus, and Vibrio parahaemolyticus were treated with different electric current intensities and for different times. The results showed that at 263 mA, treating bacteria for 100 ms eliminated all V. parahaemolyticus colonies. Although LAET reduced the populations of the three microorganisms, V. parahaemolyticus was more injured by LAET than S. aureus and E. coli when treated at the same processing conditions.
The aim of this study was to predict and map the regional distribution of the trabecular architecture and the material properties of the glenoid and to estimate the predominant loading condition on the glenoid through the mapping. The morphological and material characteristics of the glenoid were investigated by analyzing digitized trabecular bone images obtained from twelve cadaver scapula specimens. The morphological and material characteristics computed from the cadaver specimens show that the predominant loading on the glenoid generally occurs during shoulder movement, which produces forces directed toward the posterior aspect of the bare region. This study is innovative in its detailed mapping of the morphological and material characteristics of the glenoid and its pioneering approach used to estimate the loading pattern acting on the glenoid through the mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.