Successful development of ultra-sensitive molecular imaging nanoprobes for the detection of targeted biological objects is a challenging task. Although magnetic nanoprobes have the potential to perform such a role, the results from probes that are currently available have been far from optimal. Here we used artificial engineering approaches to develop innovative magnetic nanoprobes, through a process that involved the systematic evaluation of the magnetic spin, size and type of spinel metal ferrites. These magnetism-engineered iron oxide (MEIO) nanoprobes, when conjugated with antibodies, showed enhanced magnetic resonance imaging (MRI) sensitivity for the detection of cancer markers compared with probes currently available. Also, we successfully visualized small tumors implanted in a mouse. Such high-performance, nanotechnology-based molecular probes could enhance the ability to visualize other biological events critical to diagnostics and therapeutics.
The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.
With the aim of controlling nanoscale magnetism, we demonstrate an approach encompassing concepts of surface and exchange anisotropy while reflecting size, shape, and structural hybridization of nanoparticles. We visualize that cube has higher magnetization value than sphere with highest coercivity at 60 nm. Its hybridization into core-shell (CS) structure brings about a 14-fold increase in the coercivity with an exceptional energy conversion of magnetic field into thermal energy of 10600 W/g, the largest reported to date. Such capability of the CS-cube is highly effective for drug resistant cancer cell treatment.
Doped up: The incorporation of Zn(2+) dopants in tetrahedral sites leads to the successful magnetism tuning of spinel metal ferrite nanoparticles (see picture). (Zn(0.4)Mn(0.6))Fe(2)O(4) nanoparticles exhibit the highest magnetization value among the metal ferrite nanoparticles. Such high magnetism results in the largest MRI contrast effects (r2=860 mm(-1) s(-1)) reported to date and also huge hyperthermic effects.
The preparation of 2D layered SnS2 nanoplates with nanoscale lateral confinement (less than 150 nm) is described (see figure). Their unique nanoscale characteristics, including finite lateral 2D morphology, make the discharge capacity of Li ion batteries remarkably high‐almost close to the theoretical possible value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.