Biodiesel produced from waste cooking oils (WCOs) mixed with methanol was efficiently transesterified using a continuous fluid flow system with a focused microwave heating device. Strontium oxide (SrO) was added as the catalyst. The factors that most influence the biodiesel conversion rate were first estimated by considering the effects of oil-to-methanol ratio, added quantity of SrO, and microwave heating power on reaction time in a built-in batch unit. The optimal parameter values were then applied to a continuous fluid flow system, which simulates the conversion of a scaled-up quantity of WCOs into biodiesel. Under the optimum fluid flow velocity and an appropriate output temperature, a biodiesel conversion rate of ca. 93 % was reached, associated with the decomposition of ester bonds and the formation of a tetrahedral intermediate substance during the reaction.
The uptake and depuration of silver nanoparticles (AgNPs) vs. Ag+ by zebrafish (Danio rerio) were investigated using a range of analyses including single-particle ICP-MS (spICP-MS), high resolution-TEM imaging with crystal...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.