The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.
Membranes with nano-apertures are versatile templates that possess a wide range of electronic, optical and biomedical applications. However, such membranes have been limited to silicon-based inorganic materials to utilize standard semiconductor processes. Here we report a new type of flexible and free-standing polymeric membrane with nano-apertures by exploiting high-wettability difference and geometrical reinforcement via multiscale, multilevel architecture. In the method, polymeric membranes with various pore sizes (50-800 nm) and shapes (dots, lines) are fabricated by a hierarchical mould-based dewetting of ultravioletcurable resins. In particular, the nano-pores are monolithically integrated on a two-level hierarchical supporting layer, allowing for the rapid (o5 min) and robust formation of multiscale and multilevel nano-apertures over large areas (2 Â 2 cm 2 ).
A simple method for the formation of multiscale metal patterns is presented using hierarchical polymeric stamps with perfluoropolyether (PFPE). A dual-scale PFPE structure is made via two-step moulding process under partial photocrosslinking conditions. The hierarchical PFPE stamp enables multiscale transfer printing (MTP) of metal pattern in one step within microwells as well as on curved surfaces.
We fabricated a simple yet robust microfluidic platform with monolithically integrated hierarchical apertures. This platform showed efficient diffusive mixing of the introduced lipids through approximately 8000 divisions with tiny pores (~5 μm in diameter), resulting in massive, real-time production of various cargo-carrying particles via multi-hydrodynamic focusing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.