The realization of high‐contrast modulation in optically transparent media is of great significance for emerging mechano‐responsive smart windows. However, no study has provided fundamental strategies for maximizing light scattering during mechanical deformations. Here, a new type of 3D nanocomposite film consisting of an ultrathin (≈60 nm) Al2O3 nanoshell inserted between the elastomers in a periodic 3D nanonetwork is proposed. Regardless of the stretching direction, numerous light‐scattering nanogaps (corresponding to the porosity of up to ≈37.4 vol%) form at the interfaces of Al2O3 and the elastomers under stretching. This results in the gradual modulation of transmission from ≈90% to 16% at visible wavelengths and does not degrade with repeated stretching/releasing over more than 10 000 cycles. The underlying physics is precisely predicted by finite element analysis of the unit cells. As a proof of concept, a mobile‐app‐enabled smart window device for Internet of Things applications is realized using the proposed 3D nanocomposite with successful expansion to the 3 × 3 in. scale.
Polymer nanocomposites with inclusion of ceramic nanofillers have relatively high yield strength, elastic moduli, and toughness that therefore are widely used as functional coating and films for optoelectronic applications. Although the mechanical properties are enhanced with increasing the fraction of nanofiller inclusion, there generally is an upper limit on the amount of nanofiller inclusion because the aggregation of the fillers in the polymer matrix, which typically occurs, degrades the mechanical and/or optical performances above 5 vol % of inclusions. Here, we demonstrate an unconventional polymer nanocomposite composed of a uniformly distributed three-dimensional (3D) continuous ceramic nanofillers, which allows for extremely high loading (∼19 vol %) in the polymer matrix without any concern of aggregation and loss in transparency. The fabrication strategy involves conformal deposition of AlO nanolayer with a precise control in thickness that ranges from 12 to 84 nm on a 3D nanostructured porous polymer matrix followed by filling the pores with the same type of polymer. The 3D continuous AlO nanolayers embedded in the matrix with extremely high filler rate of 19.17 vol % improve compressive strength by 142% compared to the pure epoxy without AlO filler, and this value is in agreement with theoretically predicted strength through the rule of mixture. These 3D nanocomposites show superb transparency in the visible (>85% at 600 nm) and near-IR (>90% at 1 μm) regions and improved heat dissipation beyond that of conventional AlO dispersed nanocomposites with similar filler loading of 15.11 vol % due to the existence of a continuous thermal conduction path through the oxide network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.