Growing evidence indicates a reciprocal relationship between low-grade systemic inflammation and stress exposure towards increased vulnerability to neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, the neural correlates of this reciprocity and their influence on the subsequent development of PTSD are largely unknown. Here we investigated alterations in functional connectivity among brain networks related to low-grade inflammation and stress exposure using two large independent data sets. Functional couplings among the higher-order cognitive network system including the salience, default mode, and central executive networks were reduced in association with low-grade inflammation and stress exposure. This reduced functional coupling may also be related to subsequent posttraumatic stress symptom severity. The current findings propose functional couplings among the higher-order cognitive network system as neural correlates of low-grade inflammation and stress exposure, and suggest that low-grade inflammation, alongside with stress, may render individuals more vulnerable to PTSD.
Over the past decade, an increasing number of neuroimaging studies have provided insight into the neurobiological mechanisms of posttraumatic stress disorder (PSTD). In particular, molecular neuroimaging techniques have been employed in examining metabolic and neurochemical processes in PTSD. This article reviews molecular neuroimaging studies in PTSD and focuses on findings using three imaging modalities including positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance spectroscopy (MRS). Although there were some inconsistences in the findings, patients with PTSD showed altered cerebral metabolism and perfusion, receptor bindings, and metabolite profiles in the limbic regions, medial prefrontal cortex, and temporal cortex. Studies that have investigated brain correlates of treatment response are also reviewed. Lastly, the limitations of the molecular neuroimaging studies and potential future research directions are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.