During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Whereas the primary unloading event from the sieve elements (SE) to the phloem pole pericycle (PPP) has been characterized to some extent, little is known about post-SE unloading. Here, we report a novel gene, PLM (PHLOEM UNLOADING MODULATOR), in the absence of which plasmodesmata-mediated symplastic transport through the PPP-endodermis interface is specifically enhanced. Increased unloading is attributable to a defect in the formation of the ER-plasma membrane tethers during plasmodesmal morphogenesis, resulting in the majority of pores lacking a visible cytoplasmic sleeve. PLM encodes a putative enzyme required for the biosynthesis of sphingolipids with very long-chain fatty acid (VLCFA). Taken together, our results indicate that post-SE unloading involves sphingolipid metabolism which impacts plasmodesmal ultrastructure. They also raise the question of how and why plasmodesmata with no cytoplasmic sleeve facilitate molecular trafficking.
Plasmodesmata are cytoplasmic communication channels that are vital for the physiology and development of all plants. They facilitate the intercellular movement of various cargos - ranging from small molecules, such as sugars, ions and other essential nutrients and chemicals, to large complex molecules, such as proteins and different types of RNA species - by bridging neighboring cells across their cell walls. Structurally, an individual channel consists of the cytoplasmic sleeve that is formed between the endoplasmic reticulum and the plasma membrane leaflets. Plasmodesmata are highly versatile channels; they vary in number and structure, and undergo constant adjustments to their permeability in response to many internal and external cues. In this Cell Science at a Glance article and accompanying poster, we provide an overview of plasmodesmata form and function, with highlights on their development and variation, associated components and mobile factors. In addition, we present methodologies that are currently used to study plasmodesmata-mediated intercellular communication.
Plant ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme composed of two large and two small subunits. Here, we report the structures of the maize (Zea mays) genes encoding AGP small subunits of leaf and endosperm. Excluding exon 1, protein-encoding sequences of the two genes are nearly identical. Exon 1 coding sequences, however, possess no similarity. Introns are placed in identical positions and exhibit obvious sequence similarity. Size differences are primarily due to insertions and duplications, hallmarks of transposable element visitation. Comparison of the maize genes with other plant AGP small subunit genes leads to a number of noteworthy inferences concerning the evolution of these genes. The small subunit gene can be divided into two modules. One module, encompassing all coding information except that derived from exon 1, displays striking similarity among all genes. It is surprising that members from eudicots form one group, whereas those from cereals form a second group. This implies that the duplications giving rise to family members occurred at least twice and after the separation of eudicots and monocot cereals. One intron within this module may have had a transposon origin. A different evolutionary history is suggested for exon 1. These sequences define three distinct groups, two of which come from cereal seeds. This distinction likely has functional significance because cereal endosperm AGPs are cytosolic, whereas all other forms appear to be plastid localized. Finally, whereas barley (Hordeum vulgare) reportedly employs only one gene to encode the small subunit of the seed and leaf, maize utilizes the two genes described here.The formation of ADP-Glc from Glc-1-phosphate and ATP with the release of pyrophosphate is considered the first committed step in the starch biosynthetic pathway. This key, rate-limiting reaction is catalyzed by the enzyme ADP-Glc pyrophosphorylase (AGP; EC 2.7.7.27). AGP isoforms occur in organisms and tissues ranging from Escherichia coli to the potato (Solanum tuberosum) tuber and the maize (Zea mays) endosperm (for review, see Preiss and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.