The recent rise in demand for electric vehicles (EV) and energy storage supporting power systems has increased the demand for lithium-ion batteries (LIB), and it is expected to be more significant in near future. However, materials for LIB, such as lithium and cobalt, may face limited supply due to oligopolistic market characteristics, and this can have a significant impact on prices of LIB materials. This paper examines the dynamics of LIB raw material prices (cobalt, lithium, nickel, and manganese prices) with EV demand using the Vector Error Correction Model (VECM) method. The result shows that the EV demand is important in short-run dynamics of cobalt and lithium prices, which indicates that the recent increase in lithium and cobalt prices has been caused by increase in EV demand. In the long-run equilibrium, lithium and nickel prices move inversely with cobalt prices. The impulse response results confirm that EV demand has an immediate positive effect on cobalt price, and the effect maintains over two years. On the other hand, the EV demand shock to nickel, lithium, and manganese prices is relatively small. This study also analyses the impact of recycling policy of LIB on material prices. Finally, the paper discusses the policy implications for stabilizing material prices of LIB.
The primary purpose of this paper is to evaluate the benefits of distributed storage capacity in the form of deferrable demand managed centrally by a system operator, and in particular, to determine the savings in the total annual cost of supplying electricity for a system that has a substantial amount of variable generation from wind turbines. Since the objective of a centrally controlled system is to minimize the expected daily operating costs subject to the availability of generating units and storage capacity, the basic economic question is whether the savings in the annual system cost of supply, including the capital cost of installed generating capacity, can offset the capital cost of installing deferrable demand capacity. The analysis uses a new multi-period model of a power grid that treats stochastic generation explicitly and determines the optimum hourly commitment of conventional generators and the charging/discharging of deferrable demand needed to maintain the reliability of supply. A simulation example shows that deferrable demand can reduce system costs by (1) shifting demand from expensive peak periods to less expensive off-peak periods, (2) providing ramping services to mitigate the variability of wind generation, and (3) 123 W. Jeon et al.reducing the amount of installed peaking capacity needed for System Adequacy and the associated capital costs. If customers pay rates for electricity that reflect the true system costs of supplying their patterns of purchases from the grid, customers with deferrable demand will pay lower bills for electricity and their savings will be substantially more than the cost of installing deferrable demand devices. The results also show that if customers pay typical flat rates for electric energy, the economic incentives for installing deferrable demand are perverse.
With more electricity generated from renewable sources, the importance of effective storage capacity is increasing due to its capability to mitigate the inherent variability of these sources, such as wind and solar power. However, the cost of dedicated storage is high and all customers eventually have to pay. Deferrable demand offers an alternative form of storage that is potentially less expensive because the capital cost is shared between providing an energy service and supporting the grid. This paper presents an empirical analysis to illustrate the beneficial effects of Plug-in Hybrid Electric Vehicles (PHEV) and thermal storage on the total system cost using data for a hot summer day in New York City. The analysis shows how customers can reduce total system costs and their bills by 1) shifting load from expensive peak periods to less expensive off-peak periods, 2) reducing the amount of installed conventional generating capacity needed to maintain System Adequacy, and 3) providing ramping services to mitigate the variability of generation from renewable sources. Moreover, this paper demonstrates economic benefits of different types of customers with different deferrable demand capabilities under two bill payment policies, flat price payment and optimum price payment, and it finally shows how long it takes for customers to fully pay back their initial capital costs of PHEV or thermal storage under two different policies.
Abstract:In recent years, increasing requests to reduce greenhouse gas emissions have led to renewable resources rapidly replacing conventional power sources. However, the inherent variability of renewable sources reduces the reliability of power systems. Energy storage has been proposed as a viable alternative, as it can mitigate the variability of renewable energy sources and increase the efficiency of power systems by lowering peak electricity demand. In this study, we evaluate the benefits of integrating energy storage with combined wind and solar power generation in the Korean power system through using the dynamic optimization method. Realistic wind and photovoltaic solar power generation scenarios were estimated for actual sites. The results show that the wind power-based system benefitted more from energy storage than the combined wind and solar photovoltaic power-based system. This is because the high variability of wind power was reduced when it was combined with solar power. Co-optimization for energy and reserve costs was more beneficial than optimization for energy costs alone, which suggests that the reliability offered by storage is an important cost-saving factor, in addition to the reduction of energy costs by price arbitrage. Finally, the analysis was conducted under various scenarios to determine the validity of energy storage cost effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.