As technology evolves, more components are integrated into printed circuit boards (PCBs) and the PCB layout increases. Because small defects on signal trace can cause significant damage to the system, PCB surface inspection is one of the most important quality control processes. Owing to the limitations of manual inspection, significant efforts have been made to automate the inspection by utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting the pass/fail criteria based on small failure samples has always been challenging in traditional machine vision approaches. To overcome these problems, we propose an advanced PCB inspection system based on a skip-connected convolutional autoencoder. The deep autoencoder model was trained to decode the original non-defect images from the defect images. The decoded images were then compared with the input image to identify the defect location. To overcome the small and imbalanced dataset in the early manufacturing stage, we applied appropriate image augmentation to improve the model training performance. The experimental results reveal that a simple unsupervised autoencoder model delivers promising performance, with a detection rate of up to 98% and a false pass rate below 1.7% for the test data, containing 3900 defect and non-defect images.
Voice-activated artificial intelligence (AI) technology has advanced rapidly and is being adopted in various devices such as smart speakers and display products, which enable users to multitask without touching the devices. However, most devices equipped with cameras and displays lack mobility; therefore, users cannot avoid touching them for face-to-face interactions, which contradicts the voice-activated AI philosophy. In this paper, we propose a deep neural network-based real-time sound source localization (SSL) model for low-power internet of things (IoT) devices based on microphone arrays and present a prototype implemented on actual IoT devices. The proposed SSL model delivers multi-channel acoustic data to parallel convolutional neural network layers in the form of multiple streams to capture the unique delay patterns for the low-, mid-, and high-frequency ranges, and estimates the fine and coarse location of voices. The model adapted in this study achieved an accuracy of 91.41% on fine location estimation and a direction of arrival error of 7.43° on noisy data. It achieved a processing time of 7.811 ms per 40 ms samples on the Raspberry Pi 4B. The proposed model can be applied to a camera-based humanoid robot that mimics the manner in which humans react to trigger voices in crowded environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.