Herein, the pyrolysis of low-density polyethylene (LDPE) scrap in the presence of a H-ZSM-11 zeolite was conducted as an effort to valorize plastic waste to fuel-range chemicals. The LDPE-derived pyrolytic gas was composed of low-molecular-weight aliphatic hydrocarbons (e.g., methane, ethane, propane, ethylene, and propylene) and hydrogen. An increase in pyrolysis temperature led to increasing the gaseous hydrocarbon yields for the pyrolysis of LDPE. Using the H-ZSM-11 catalyst in the pyrolysis of LDPE greatly enhanced the content of propylene in the pyrolytic gas because of promoted dehydrogenation of propane formed during the pyrolysis. Apart from the light aliphatic hydrocarbons, jet fuel-, diesel-, and motor oil-range hydrocarbons were found in the pyrolytic liquid for the non-catalytic and catalytic pyrolysis. The change in pyrolysis temperature for the catalytic pyrolysis affected the hydrocarbon compositions of the pyrolytic liquid more materially than for the non-catalytic pyrolysis. This study experimentally showed that H-ZSM-11 can be effective at producing fuel-range hydrocarbons from LDPE waste through pyrolysis. The results would contribute to the development of waste valorization process via plastic upcycling.
Herein, the pyrolysis of two types of single-use disposable waste (single-use food containers and corrugated fiberboard) was investigated as an approach to cleanly dispose of municipal solid waste, including plastic waste. For the pyrolysis of single-use food containers or corrugated fiberboard, an increase in temperature tended to increase the yield of pyrolytic gas (i.e., non-condensable gases) and decrease the yield of pyrolytic liquid (i.e., a mixture of condensable compounds) and solid residue. The single-use food container-derived pyrolytic product was largely composed of hydrocarbons with a wide range of carbon numbers from C1 to C32, while the corrugated fiberboard-derived pyrolytic product was composed of a variety of chemical groups such as phenolic compounds, polycyclic aromatic compounds, and oxygenates involving alcohols, acids, aldehydes, ketones, acetates, and esters. Changes in the pyrolysis temperature from 500 °C to 900 °C had no significant effect on the selectivity toward each chemical group found in the pyrolytic liquid derived from either the single-use food containers or corrugated fiberboard. The co-pyrolysis of the single-use food containers and corrugated fiberboard led to 6 times higher hydrogen (H2) selectivity than the pyrolysis of the single-use food containers only. Furthermore, the co-pyrolysis did not form phenolic compounds or polycyclic aromatic compounds that are hazardous environmental pollutants (0% selectivity), indicating that the co-pyrolysis process is an eco-friendly method to treat single-use disposable waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.