In this paper, a new model for the below-boiling point evaporation process with a meshfree collocation method is developed. In order to capture the phase change process, two different approaches are proposed: multi-phase and single-phase. First, a multi-phase approach is considered, where a novel mass transfer model assumes that the diffusion driven by the vapor concentration gradient in the air phase near the interface is the primary driving force for the mass transfer between phases as both the liquid water and air/vapor phases are simulated. Then, a water-only single-phase approach is also proposed, in which only the liquid water phase is simulated. For this, appropriate free surface boundary conditions are developed based on the convective mass transfer theory to model evaporation and incorporate airflow effects without explicitly simulating the air phase. In order to validate the proposed models, a series of experiments with varying air temperature, relative humidity, and airflow rate is conducted. The numerical results show a good agreement with the evaporation rate measured in the experiments. The multi-phase simulations agree better with the experiments, while the single-phase simulations also produce good results with a much lower computational effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.