mTOR kinase inhibitors which target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacological inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors.
Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting factor for cap-dependent translation initiation, which is known to regulate oncogenesis. Elevated eIF4E and its negative impact on prognosis in human non-small cell lung cancer (NSCLC) have been reported previously. However, its potential as a therapeutic target and role in regulation of sensitivity to EGFR inhibitors is an area of ongoing investigations. In this study, we detected increased levels of eIF4E in 16 human NSCLC cell lines compared with their normal bronchial epithelial cells. Consistently, human tissue array analysis showed that eIF4E expression was significantly higher in human NSCLC tissues than normal tissues. Inhibition of eIF4E using eIF4E siRNA inhibited the growth and invasion of NSCLC cells. These data suggest that eIF4E overexpression plays a crucial role in positive regulation of the growth and invasion of NSCLC cells. By proteomics, we found that eIF4E levels were elevated in erlotinib-resistant cell lines compared with the sensitive parental cell line. In agreement, assembly of the eIF4F cap complex and several oncogenic proteins regulated by the cap-dependent translation mechanism, were also increased in erlotinib-resistant cells. Thus, erlotinib-resistant cells exhibit elevated eIF4E expression and cap-dependent translation. Inhibition of eIF4F with different means (e.g., gene knockdown) downregulated c-Met expression and partially restored cell sensitivity to erlotinib, suggesting that elevated eIF4E contributes to development of erlotinib resistance, likely through positive regulation of c-Met expression. Taken together, we suggest that elevated eIF4E in NSCLC cells is associated with proliferation, invasion and acquired erlotinib resistance.
Background: Posttranslational regulation of rictor, a key partner of mTOR complex 2, and its underlying mechanism are largely undefined and thus are the focus of this study. Results: FBXW7 interacts with rictor and mediates its degradation; this process requires phosphorylation of rictor at threonine 1695 by GSK3. Conclusion: Rictor undergoes GSK3-dependent, FBXW7-mediated ubiquitination and proteasomal degradation. Significance: A previously unknown mechanism underlying posttranslational regulation of rictor expression is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.