Scanning probe microscopes (SPMs) have some ability to image sub-surface structures. This paper describes the theoretical and practical basis for imaging metal lines buried beneath insulating layers and for imaging insulating regions or voids within metal with SPMs. Three techniques are discussed: scanning Kelvin force microscopy (SKFM) to image the potential of buried metal lines, scanning microwave microscopy (SMM) to image the capacitance of buried metal lines, and SMM to image voids in metals through the frequency dependence of the skin depth. A test chip, designed at NIST, and that contains buried structures to precisely produce electric potential and magnetic field variations at the surface to test the presumptions is described, along with some preliminary results.
Metal, typically gold [Au], nanoparticles [NPs] embedded in a capping metal contact layer onto silicon carbide [SiC] are considered to have practical applications in changing the barrier height of the original contacts. Here, we demonstrate the use of silver [Ag] NPs to effectively lower the barrier height of the electrical contacts to 4H-SiC. It has been shown that the barrier height of the fabricated SiC diode structures (Ni with embedded Ag-NPs) has significantly reduced by 0.11 eV and 0.18 eV with respect to the samples with Au-NPs and the reference samples, respectively. The experimental results have also been compared with both an analytic model based on Tung's theory and physics-based two-dimensional numerical simulations.
The effect of crystalline plane orientations of Silicon carbide (SiC) (a-, m-, and c-planes) on the local oxidation on 4H-SiC using atomic force microscopy (AFM) was investigated. It has been found that the AFM-based local oxidation (AFM-LO) rate on SiC is closely correlated to the atomic planar density values of different crystalline planes (a-plane, 7.45 cm-2; c-plane, 12.17 cm-2; and m-plane, 6.44 cm-2). Specifically, at room temperature and under about 40% humidity with a scan speed of 0.5 μm/s, the height of oxides on a- and m-planes 4H-SiC is 6.5 and 13 nm, respectively, whereas the height of oxides on the c-plane increased up to 30 nm. In addition, the results of AFM-LO with thermally grown oxides on the different plane orientations in SiC are compared.
In this study, we have fabricated nano-scaled oxide structures on GaAs substrates that are doped in different conductivity types of p- and n-types and plane orientations of GaAs(100) and GaAs(711), respectively, using an atomic force microscopy (AFM) tip-induced local oxidation method. The AFM-induced GaAs oxide patterns were obtained by varying applied bias from approximately 5 V to approximately 15 V and the tip loading forces from 60 to 180 nN. During the local oxidation, the humidity and the tip scan speed are fixed to approximately 45% and approximately 6.3 μm/s, respectively. The local oxidation rate is further improved in p-type GaAs compared to n-type GaAs substrates whereas the rate is enhanced in GaAs(100) compared to and GaAs(711), respectively, under the identical conditions. In addition, the oxide formation mechanisms in different doping types and plane orientations were investigated and compared with two-dimensional simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.