Facing the reinforced emission regulations and moving toward a clean powertrain, hydrogen has become one of the alternative fuels for the internal combustion engine. In this study, the prediction methodology of hydrogen yield by on-board fuel reforming under a diesel engine is introduced. An engine dynamometer test was performed, resulting in reduced particulate matter (PM) and NOx emission with an on-board reformer. Based on test results, the reformed gas production rate from the on-board reformer was trained and predicted using an artificial neural network with a backpropagation process at various operating conditions. Additional test points were used to verify predicted results, and sensitivity analysis was performed to obtain dominant parameters. As a result, the temperature at the reformer outlet and oxygen concentration is the most dominant parameters to predict reformed gas owing to auto-thermal reforming driven by partial oxidation reforming process, dominantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.