We investigate the size- and composition-dependent ac magnetic permeability of superparamagnetic iron oxide nanocrystals for radio frequency (RF) applications. The nanocrystals are obtained through high-temperature decomposition synthesis, and their stoichiometry is determined by Mössbauer spectroscopy. Two sets of oxides are studied: (a) as-synthesized magnetite-rich and (b) aged maghemite nanocrystals. All nanocrystalline samples are confirmed to be in the superparamagnetic state at room temperature by SQUID magnetometry. Through the one-turn inductor method, the ac magnetic properties of the nanocrystalline oxides are characterized. In magnetite-rich iron oxide nanocrystals, size-dependent magnetic permeability is not observed, while maghemite iron oxide nanocrystals show clear size dependence. The inductance, resistance, and quality factor of hand-wound inductors with a superparamagnetic composite core are measured. The superparamagnetic nanocrystals are successfully embedded into hand-wound inductors to function as inductor cores.
Abstract-The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200 V) and low-to-moderate power levels (e.g., up to 50 W) and demonstrating the technologies in a high-efficiency light-emitting diode driver, as an example application. This paper presents an overview of the program and of the progress toward meeting the program goals. Key program aspects and progress in advanced nitride power devices and device reliability, integrated highfrequency magnetics and magnetic materials, and high-frequency converter architectures are summarized.Index Terms-Gallium nitride, high frequency (HF), integrated magnetics, integrated power converter, light-emitting diode (LED) driver, PwrSoC.
Computer-controlled dynamic mode multidirectional ultraviolet (UV) lithography has been demonstrated using a collimated UV light source, a substrate-holding stage equipped with two stepper motors (one for tilting and the other for rotation), a controller with programming software and a laptop computer. The tilting and rotational angles of the stage in motion are accurately controlled during UV exposure as programmed by the user to produce complex three-dimensional (3D) microstructures. Process parameters include the initial and final tilting and rotational angles of the stage, and the relative angular velocities of the two motors in addition to the normal fabrication process parameters of UV lithography such as optical dose, baking time, and developing time and condition. Symmetric patterns can be generated by a simple synchronous mode dynamic operation, where both the angular velocities of the tilting motion and the rotating motion are set equal or harmonically related. More complex and non-symmetric patterns can be obtained using a piecewise synchronous mode, where the relationship between the angular velocities of the two motors is described not with a single coefficient but with a set of coefficients. 3D structures fabricated from the synchronous mode operation include the four-leaf clover horn and the cardiac horn while the ones from the piecewise synchronous mode are a vertical triangular slab, a screwed wind vane and arbitrary shape horns. Ray trace simulation has been performed using a mathematical tool in a spherical coordinate system and the simulated 3D patterns show good agreement with the fabricated ones.
We present a microfluidic network-based combinatorial dilution device to generate on-demand combinatorial dilutions of all input samples in the range of a 3D simplex-centroid. The device consists of an initial concentration control module and a combinatorial dilution module. In the initial concentration control module, the concept of using a single common channel has been incorporated to generate desirable concentrations of each sample, diluted independently in response to variable input flow. Then, the diluted samples flow into the combinatorial dilution module to generate a full set of seven combinations from the three samples. First, we investigated the performance of the initial concentration controller by computational simulation (CFD-ACE ? ). The simulated output concentrations are extremely close to the expected theoretical values. Further, a PDMS-based initial concentration controller was fabricated, and its linearity and independency were tested with fluorescent dye. Then, we designed, simulated, and tested a combinatorial dilution device integrated with the initial concentration controller. Finally, as proof-of-concept, we performed a simple combinatorial cytotoxicity test with three drugs (Mitomycin C, Doxorubicin, and 5-FU) for MCF-7 cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.