This paper describes a hardware-in-the-loop simulation system for the validation of a vehicle body electronic control unit. The hardware-in-the-loop simulation system consists of three parts: a real-time target machine, an electronic control unit, and a signal conditioning unit, which regulates the voltage levels between the real-time target and the electronic control unit. The real-time target machine generates switch and feedback signals to the electronic control unit. The software model, representing body electronics hardware, such as a power seat and power trunk, runs inside a real-time target machine. The software model is composed of a mechanical part that represents the dynamic behaviors and an electronic part to calculate the motor speeds, current, and electronic loads under various conditions. The hardware-in-the-loop test was carried out for two different large passenger vehicle electronic control units, since the purpose of this research is to validate the various electronic control units by just simply modifying the corresponding vehicle model, the power seat, and the power trunk. Test results indicate that the developed software model can effectively replace the real hardware, and that this virtual model can be used to validate the signal logic between the electronic control unit and the model. In addition, the electrical robustness of the electronic control unit was validated by applying surge currents to the electronic control unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.