This study explores the impact of HbA1c levels on the structure of haemoglobin (Hb) in patients with type 2 diabetes. Seventy-four diabetic patients were classified into the following two groups based on their level of HbA1c: group A, patients with good glycaemic control (HbA1c < 7.0%, n = 36); group B, patients with persistent hyperglycaemia (HbA1c ≥ 9.0%, n = 38). Thirty-four healthy people served as controls (group H). Hb structure was examined by Fourier transform infrared spectroscopy (FTIR), and diabetic erythrocytes were modelled to estimate the impact of glucose on these cells and Hb. Increasing glucose concentrations altered both erythrocyte parameters and the Hb secondary structure. Group B differed significantly from group H (p < 0.05): in the former, the ordered Hb secondary structure had a strong tendency to transform into a disordered secondary structure, decreasing structural stability. We presumed here that high HbA1c levels might be a factor contributing to Hb structural modifications in diabetic patients. FTIR spectral analysis can provide a novel way to investigate the pathogenesis of type 2 diabetes mellitus.
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size under different power density electromagnetic waves radiation were presented in this paper. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm 2 , 31 μW/cm 2 ) electromagnetic wave radiation when the radiation time is not more than 30 minutes; however, the cells do have significant reactions in shape, size to the electromagnetic waves radiation with power densities of 1 mW/cm 2 and 5 mW/cm 2 . The data reveals the possible influences and statistical relationships among living human cell functions, radiation amount and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.