A large perpendicular magnetic anisotropy (PMA) of 1.4 MJ/m3 was observed from ultrathin Fe/MgO(001) bilayers grown on Cr-buffered MgO(001). The PMA strongly depends on the surface state of Fe prior to the MgO deposition. A large PMA energy density of 1.4 MJ/m3 was achieved for a 0.7 nm thick Fe layer having adsorbate-induced surface reconstruction, which is likely to originate from oxygen atoms floating up from the Cr buffer layer. This large magnitude of PMA satisfies the criterion that is required for thermal stability of magnetization in a few tens nanometer-sized magnetic memory elements.
A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3dz2 and O 2pz states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.