Precise sensing of pressure is essential for various mechanical and electrical systems. The recent emergence of flexible pressure sensors has enabled novel applications, such as human–machine interfaces, soft robotics, and wearable devices. Specifically, the piezoresistive sensing scheme is widely adapted for flexible pressure sensors as it is simple and exhibits outstanding measurement sensitivity and stability. The sensing properties of piezoresistive pressure sensors mainly depends on the materials and contact morphologies at the interface. This paper proposes a flexible pressure sensor based on multi-height microstructures in which the measurement sensitivity and detection range are tunable. Such tunability is due to the sequential contact of micropyramids with different heights. The multi-height micropyramid structured PDMS layer with stamp-coated multi-walled carbon nanotubes (MWCNTs) acts as a conductive active layer and a gold interdigitated electrode (IDE) patterned polyimide (PI) layer works as the bottom electrode. The fabricated sensor exhibits a sensitivity of 0.19 kPa−1, a fast response speed of 20 ms, and a detection range of up to 100 kPa. The sensor is applied to a robotic gripper for object recognition and integrated into a shoe to track walking motions.
Air pollution caused by fine dust is a big problem all over the world and fine dust has a fatal impact on human health. But there are too few fine dust measuring stations and the installation cost of fine dust measuring station is very expensive. In this paper, we propose Cloud-based air pollution information system using R. To measure fine dust, we have developed an inexpensive measuring device and studied the technique to accurately measure the concentration of fine dust at the user's location. And we have developed the smartphone application to provide air pollution information. In our system, we provide collected data based analytical results through effective data modeling. Our system provides information on fine dust value and action tips through the air pollution information application. And it supports visualization on the map using the statistical program R. The user can check the fine dust statistics map and cope with fine dust accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.