We studied the estrogenic activity of a component of Panax ginseng, ginsenoside-Rb1. The activity of ginsenoside-Rb1 was characterized in a transient transfection system, using estrogen receptor isoforms and estrogen-responsive luciferase plasmids, in COS monkey kidney cells. Ginsenoside-Rb1 activated both alpha and beta estrogen receptors in a dose-dependent manner with maximal activity observed at 100 microm, the highest concentration examined. Activation was inhibited by the estrogen receptor antagonist ICI 182,780, indicating that the effects were mediated through the estrogen receptor. Treatment with 17beta-estradiol or ginsenoside-Rb1 increased expression of the progesterone receptor, pS2, and estrogen receptor in MCF-7 cells and of AP-1-driven luciferase genes in COS cells. Although these data suggest that it is functionally very similar to 17beta-estradiol, ginsenoside-Rb1 failed to displace specific binding of [(3)H]17beta-estradiol from estrogen receptors in MCF-7 whole-cell ligand binding assays. Our results indicate that the estrogen-like activity of ginsenoside-Rb1 is independent of direct estrogen receptor association.
The estrogen receptor (ER) is down-regulated under hypoxia via a proteasome-dependent pathway. We studied the mechanism of ERalpha degradation under hypoxic mimetic conditions. Cobalt chloride-induced ERalpha down-regulation was dependent on the expression of newly synthesized protein(s), one possibility of which was hypoxia-inducible factor-1alpha (HIF-1alpha). To examine the role of HIF-1alpha expression in ERalpha down-regulation under hypoxic-mimetic conditions, we used a constitutively active form of HIF-1alpha, HIF-1alpha/herpes simplex viral protein 16 (VP16), constructed by replacing the transactivation domain of HIF-1alpha with that of VP16. Western blot analysis revealed that HIF-1alpha/VP16 down-regulated ERalpha in a dose-dependent manner via a proteasome-dependent pathway. The kinase pathway inhibitors PD98059, U0126, wortmannin, and SB203580 did not affect the down-regulation. A mammalian two-hybrid screen and immunoprecipitation assays indicated that ERalpha interacted with HIF-1alpha physically. These results suggest that ERalpha down-regulation under hypoxia involves protein-protein interactions between the ERalpha and HIF-1alpha.
IntroductionEstrogen receptor (ER) β is predicted to play an important role in prevention of breast cancer development and metastasis. We have shown previously that ERβ inhibits hypoxia inducible factor (HIF)-1α mediated transcription, but the mechanism by which ERβ works to exert this effect is not understood.MethodsVascular endothelial growth factor (VEGF) was measured in conditioned medium by enzyme-linked immunosorbent assays. Reverse transcription polymerase chain reaction (RT-PCR), Western blotting, immunoprecipitation, luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to ascertain the implication of ERβ on HIF-1 function.ResultsIn this study, we found that the inhibition of HIF-1 activity by ERβ expression was correlated with ERβ's ability to degrade aryl hydrocarbon receptor nuclear translocator (ARNT) via ubiquitination processes leading to the reduction of active HIF-1α/ARNT complexes. HIF-1 repression by ERβ was rescued by overexpression of ARNT as examined by hypoxia-responsive element (HRE)-driven luciferase assays. We show further that ERβ attenuated the hypoxic induction of VEGF mRNA by directly decreasing HIF-1α binding to the VEGF gene promoter.ConclusionsThese results show that ERβ suppresses HIF-1α-mediated transcription via ARNT down-regulation, which may account for the tumour suppressive function of ERβ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.